STT-tensorflow/tensorflow/python/kernel_tests/spacetodepth_op_test.py
A. Unique TensorFlower 4ac9bda9d0 [TF:XLA] Enable XLA through autojit for all tensorflow/python/kernel_test/ tests.
Some test methods are disabled, but all tests now have a new "_xla" version of the test for XLA:GPU testing. This will run 2 different tests. One with XLA and one without.

PiperOrigin-RevId: 229149574
2019-01-14 02:42:27 -08:00

362 lines
14 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for SpacetoDepth op."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import gradient_checker
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging
class SpaceToDepthTest(test.TestCase):
def _testOne(self, inputs, block_size, outputs, dtype=dtypes.float32):
input_nhwc = math_ops.cast(inputs, dtype)
with test_util.force_cpu():
# test NHWC (default) on CPU
x_tf = array_ops.space_to_depth(input_nhwc, block_size)
self.assertAllEqual(self.evaluate(x_tf), outputs)
if test_util.is_gpu_available():
with test_util.force_gpu():
# test NHWC (default) on GPU
x_tf = array_ops.space_to_depth(input_nhwc, block_size)
self.assertAllEqual(self.evaluate(x_tf), outputs)
# test NCHW on GPU
input_nchw = test_util.NHWCToNCHW(input_nhwc)
output_nchw = array_ops.space_to_depth(
input_nchw, block_size, data_format="NCHW")
output_nhwc = test_util.NCHWToNHWC(output_nchw)
self.assertAllEqual(self.evaluate(output_nhwc), outputs)
def testBasic(self):
x_np = [[[[1], [2]], [[3], [4]]]]
block_size = 2
x_out = [[[[1, 2, 3, 4]]]]
for dtype in [dtypes.float32, dtypes.float16, dtypes.uint8]:
self._testOne(x_np, block_size, x_out, dtype=dtype)
# Tests for larger input dimensions. To make sure elements are
# correctly ordered spatially.
def testLargerInput2x2(self):
x_np = [[[[1], [2], [5], [6]], [[3], [4], [7], [8]],
[[9], [10], [13], [14]], [[11], [12], [15], [16]]]]
block_size = 2
x_out = [[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12],
[13, 14, 15, 16]]]]
self._testOne(x_np, block_size, x_out)
# Tests for larger input dimensions. To make sure elements are
# correctly ordered in depth. Here, larger block size.
def testLargerInput4x4(self):
x_np = [[[[1], [2], [5], [6]], [[3], [4], [7], [8]],
[[9], [10], [13], [14]], [[11], [12], [15], [16]]]]
block_size = 4
x_out = [[[[1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 13, 14, 11, 12, 15, 16]]]]
self._testOne(x_np, block_size, x_out)
# Tests for larger input depths.
# To make sure elements are properly interleaved in depth.
def testDepthInterleaved(self):
x_np = [[[[1, 10], [2, 20]], [[3, 30], [4, 40]]]]
block_size = 2
x_out = [[[[1, 10, 2, 20, 3, 30, 4, 40]]]]
self._testOne(x_np, block_size, x_out)
# Tests for larger input depths. Here an odd depth.
# To make sure elements are properly interleaved in depth.
def testDepthInterleavedDepth3(self):
x_np = [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]]
block_size = 2
x_out = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]
self._testOne(x_np, block_size, x_out)
# Tests for larger input dimensions AND for larger input depths.
# To make sure elements are properly interleaved in depth and ordered
# spatially.
def testDepthInterleavedLarge(self):
x_np = [[[[1, 10], [2, 20], [5, 50], [6, 60]],
[[3, 30], [4, 40], [7, 70], [8, 80]],
[[9, 90], [10, 100], [13, 130], [14, 140]],
[[11, 110], [12, 120], [15, 150], [16, 160]]]]
block_size = 2
x_out = [[[[1, 10, 2, 20, 3, 30, 4, 40], [5, 50, 6, 60, 7, 70, 8, 80]],
[[9, 90, 10, 100, 11, 110, 12, 120],
[13, 130, 14, 140, 15, 150, 16, 160]]]]
self._testOne(x_np, block_size, x_out)
def testBlockSize2Batch10(self):
block_size = 2
def batch_input_elt(i):
return [[[1 * i], [2 * i], [5 * i], [6 * i]],
[[3 * i], [4 * i], [7 * i], [8 * i]],
[[9 * i], [10 * i], [13 * i], [14 * i]],
[[11 * i], [12 * i], [15 * i], [16 * i]]]
def batch_output_elt(i):
return [[[1 * i, 2 * i, 3 * i, 4 * i], [5 * i, 6 * i, 7 * i, 8 * i]],
[[9 * i, 10 * i, 11 * i, 12 * i],
[13 * i, 14 * i, 15 * i, 16 * i]]]
batch_size = 10
x_np = [batch_input_elt(i) for i in range(batch_size)]
x_out = [batch_output_elt(i) for i in range(batch_size)]
self._testOne(x_np, block_size, x_out)
def testBatchSize0(self):
block_size = 2
batch_size = 0
input_nhwc = array_ops.ones([batch_size, 4, 6, 3])
x_out = array_ops.ones([batch_size, 2, 3, 12])
with test_util.force_cpu():
# test NHWC (default) on CPU
x_tf = array_ops.space_to_depth(input_nhwc, block_size)
self.assertAllEqual(x_tf.shape, x_out.shape)
self.evaluate(x_tf)
if test.is_gpu_available():
with test_util.use_gpu():
# test NHWC (default) on GPU
x_tf = array_ops.space_to_depth(input_nhwc, block_size)
self.assertAllEqual(x_tf.shape, x_out.shape)
self.evaluate(x_tf)
# Tests for different width and height.
def testNonSquare(self):
x_np = [[[[1, 10], [2, 20]], [[3, 30], [4, 40]], [[5, 50], [6, 60]],
[[7, 70], [8, 80]], [[9, 90], [10, 100]], [[11, 110], [12, 120]]]]
block_size = 2
x_out = [[[[1, 10, 2, 20, 3, 30, 4, 40]], [[5, 50, 6, 60, 7, 70, 8, 80]],
[[9, 90, 10, 100, 11, 110, 12, 120]]]]
self._testOne(x_np, block_size, x_out)
# Error handling:
@test_util.run_deprecated_v1
def testInputWrongDimMissingDepth(self):
# The input is missing the last dimension ("depth")
x_np = [[[1, 2], [3, 4]]]
block_size = 2
with self.assertRaises(ValueError):
out_tf = array_ops.space_to_depth(x_np, block_size)
self.evaluate(out_tf)
@test_util.run_deprecated_v1
def testInputWrongDimMissingBatch(self):
# The input is missing the first dimension ("batch")
x_np = [[[1], [2]], [[3], [4]]]
block_size = 2
with self.assertRaises(ValueError):
_ = array_ops.space_to_depth(x_np, block_size)
@test_util.run_deprecated_v1
def testBlockSize0(self):
# The block size is 0.
x_np = [[[[1], [2]], [[3], [4]]]]
block_size = 0
with self.assertRaises(ValueError):
out_tf = array_ops.space_to_depth(x_np, block_size)
self.evaluate(out_tf)
@test_util.run_deprecated_v1
def testBlockSizeOne(self):
# The block size is 1. The block size needs to be > 1.
x_np = [[[[1], [2]], [[3], [4]]]]
block_size = 1
with self.assertRaises(ValueError):
out_tf = array_ops.space_to_depth(x_np, block_size)
self.evaluate(out_tf)
@test_util.run_deprecated_v1
def testBlockSizeLarger(self):
# The block size is too large for this input.
x_np = [[[[1], [2]], [[3], [4]]]]
block_size = 10
with self.assertRaises(ValueError):
out_tf = array_ops.space_to_depth(x_np, block_size)
self.evaluate(out_tf)
@test_util.run_deprecated_v1
def testBlockSizeNotDivisibleWidth(self):
# The block size divides width but not height.
x_np = [[[[1], [2], [3]], [[3], [4], [7]]]]
block_size = 3
with self.assertRaises(ValueError):
_ = array_ops.space_to_depth(x_np, block_size)
@test_util.run_deprecated_v1
def testBlockSizeNotDivisibleHeight(self):
# The block size divides height but not width.
x_np = [[[[1], [2]], [[3], [4]], [[5], [6]]]]
block_size = 3
with self.assertRaises(ValueError):
_ = array_ops.space_to_depth(x_np, block_size)
@test_util.run_deprecated_v1
def testBlockSizeNotDivisibleBoth(self):
# The block size does not divide neither width or height.
x_np = [[[[1], [2]], [[3], [4]]]]
block_size = 3
with self.assertRaises(ValueError):
_ = array_ops.space_to_depth(x_np, block_size)
@test_util.run_deprecated_v1
def testUnknownShape(self):
t = array_ops.space_to_depth(
array_ops.placeholder(dtypes.float32), block_size=4)
self.assertEqual(4, t.get_shape().ndims)
def spaceToDepthUsingTranspose(self, tensor, block_size, data_format):
block_size_sq = block_size * block_size
if data_format == "NHWC":
b, ih, iw, ic = tensor.shape.as_list()
assert ih % block_size == 0, (ih, block_size)
assert iw % block_size == 0, (iw, block_size)
ow, oh, oc = iw // block_size, ih // block_size, ic * block_size_sq
tensor = array_ops.reshape(tensor,
[b, oh, block_size, ow, block_size, ic])
tensor = array_ops.transpose(tensor, [0, 1, 3, 2, 4, 5])
tensor = array_ops.reshape(tensor, [b, oh, ow, oc])
elif data_format == "NCHW":
b, ic, ih, iw = tensor.shape.as_list()
assert ih % block_size == 0, (ih, block_size)
assert iw % block_size == 0, (iw, block_size)
ow, oh, oc = iw // block_size, ih // block_size, ic * block_size_sq
tensor = array_ops.reshape(tensor,
[b, ic, oh, block_size, ow, block_size])
tensor = array_ops.transpose(tensor, [0, 3, 5, 1, 2, 4])
tensor = array_ops.reshape(tensor, [b, oc, oh, ow])
return tensor
def compareToTranspose(self, batch_size, out_height, out_width, in_channels,
block_size, data_format, use_gpu):
in_height = out_height * block_size
in_width = out_width * block_size
nhwc_input_shape = [batch_size, in_height, in_width, in_channels]
nchw_input_shape = [batch_size, in_channels, in_height, in_width]
total_size = np.prod(nhwc_input_shape)
if data_format == "NCHW_VECT_C":
# Initialize the input tensor with qint8 values that circle -127..127.
x = [((f + 128) % 255) - 127 for f in range(total_size)]
t = constant_op.constant(x, shape=nhwc_input_shape, dtype=dtypes.float32)
expected = self.spaceToDepthUsingTranspose(t, block_size, "NHWC")
t = test_util.NHWCToNCHW_VECT_C(t)
t, _, _ = gen_array_ops.quantize_v2(t, -128.0, 127.0, dtypes.qint8)
t = array_ops.space_to_depth(t, block_size, data_format="NCHW_VECT_C")
t = gen_array_ops.dequantize(t, -128, 127)
actual = test_util.NCHW_VECT_CToNHWC(t)
else:
# Initialize the input tensor with ascending whole numbers as floats.
x = [f * 1.0 for f in range(total_size)]
shape = nchw_input_shape if data_format == "NCHW" else nhwc_input_shape
t = constant_op.constant(x, shape=shape, dtype=dtypes.float32)
expected = self.spaceToDepthUsingTranspose(t, block_size, data_format)
actual = array_ops.space_to_depth(t, block_size, data_format=data_format)
with self.cached_session(use_gpu=use_gpu) as sess:
actual_vals, expected_vals = self.evaluate([actual, expected])
self.assertTrue(np.array_equal(actual_vals, expected_vals))
@test_util.disable_xla("This test never passed for XLA")
def testAgainstTranspose(self):
self.compareToTranspose(3, 2, 3, 1, 2, "NHWC", False)
self.compareToTranspose(1, 2, 3, 2, 2, "NHWC", False)
self.compareToTranspose(1, 2, 3, 2, 3, "NHWC", False)
if not test.is_gpu_available():
tf_logging.info("skipping gpu tests since gpu not available")
return
self.compareToTranspose(3, 2, 3, 1, 2, "NHWC", True)
self.compareToTranspose(3, 2, 3, 2, 2, "NHWC", True)
self.compareToTranspose(3, 2, 3, 1, 2, "NCHW", True)
self.compareToTranspose(3, 2, 3, 2, 3, "NCHW", True)
self.compareToTranspose(5, 7, 11, 3, 2, "NCHW", True)
self.compareToTranspose(3, 2, 3, 4, 2, "NCHW_VECT_C", True)
self.compareToTranspose(3, 2, 3, 8, 3, "NCHW_VECT_C", True)
self.compareToTranspose(5, 7, 11, 12, 2, "NCHW_VECT_C", True)
class SpaceToDepthGradientTest(test.TestCase):
# Check the gradients.
def _checkGrad(self, x, block_size, data_format):
# NCHW is implemented for only GPU.
if data_format == "NCHW" and not test.is_gpu_available():
return
assert 4 == x.ndim
with self.cached_session(use_gpu=True):
tf_x = ops.convert_to_tensor(x)
tf_y = array_ops.space_to_depth(tf_x, block_size, data_format=data_format)
epsilon = 1e-2
((x_jacob_t, x_jacob_n)) = gradient_checker.compute_gradient(
tf_x,
x.shape,
tf_y,
tf_y.get_shape().as_list(),
x_init_value=x,
delta=epsilon)
self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon)
# Tests a gradient for space_to_depth of x which is a four dimensional
# tensor of shape [b, h * block_size, w * block_size, d].
def _compare(self, b, h, w, d, block_size, data_format):
block_size_sq = block_size * block_size
data = np.random.normal(0, 1, b * h * w * d * block_size_sq).astype(
np.float32)
if data_format == "NHWC":
x = data.reshape([b, h * block_size, w * block_size, d])
else:
x = data.reshape([b, d, h * block_size, w * block_size])
self._checkGrad(x, block_size, data_format)
# Don't use very large numbers as dimensions here as the result is tensor
# with cartesian product of the dimensions.
@test_util.run_deprecated_v1
def testSmall(self):
block_size = 2
self._compare(1, 2, 3, 5, block_size, "NHWC")
self._compare(1, 2, 3, 5, block_size, "NCHW")
@test_util.run_deprecated_v1
def testSmall2(self):
block_size = 2
self._compare(2, 4, 3, 2, block_size, "NHWC")
self._compare(2, 4, 3, 2, block_size, "NCHW")
if __name__ == "__main__":
test.main()