165 lines
5.7 KiB
C++
165 lines
5.7 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stdint.h>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace depth_to_space {
|
|
|
|
// This file has two implementation of DepthToSpace. Note that DepthToSpace only
|
|
// works on 4D tensors.
|
|
enum KernelType {
|
|
kReference,
|
|
kGenericOptimized,
|
|
};
|
|
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params =
|
|
reinterpret_cast<TfLiteDepthToSpaceParams*>(node->builtin_data);
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
|
|
|
|
auto data_type = output->type;
|
|
TF_LITE_ENSURE(context,
|
|
data_type == kTfLiteFloat32 || data_type == kTfLiteUInt8 ||
|
|
data_type == kTfLiteInt8 || data_type == kTfLiteInt32 ||
|
|
data_type == kTfLiteInt64);
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
|
|
|
const int block_size = params->block_size;
|
|
const int input_height = input->dims->data[1];
|
|
const int input_width = input->dims->data[2];
|
|
const int input_channels = input->dims->data[3];
|
|
int output_height = input_height * block_size;
|
|
int output_width = input_width * block_size;
|
|
int output_channels = input_channels / block_size / block_size;
|
|
|
|
TF_LITE_ENSURE_EQ(context, input_height, output_height / block_size);
|
|
TF_LITE_ENSURE_EQ(context, input_width, output_width / block_size);
|
|
TF_LITE_ENSURE_EQ(context, input_channels,
|
|
output_channels * block_size * block_size);
|
|
|
|
TfLiteIntArray* output_size = TfLiteIntArrayCreate(4);
|
|
output_size->data[0] = input->dims->data[0];
|
|
output_size->data[1] = output_height;
|
|
output_size->data[2] = output_width;
|
|
output_size->data[3] = output_channels;
|
|
|
|
return context->ResizeTensor(context, output, output_size);
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params =
|
|
reinterpret_cast<TfLiteDepthToSpaceParams*>(node->builtin_data);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
#define TF_LITE_DEPTH_TO_SPACE(type, scalar) \
|
|
tflite::DepthToSpaceParams op_params; \
|
|
op_params.block_size = params->block_size; \
|
|
type::DepthToSpace(op_params, GetTensorShape(input), \
|
|
GetTensorData<scalar>(input), GetTensorShape(output), \
|
|
GetTensorData<scalar>(output))
|
|
switch (input->type) { // Already know in/out types are same.
|
|
case kTfLiteFloat32:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_DEPTH_TO_SPACE(reference_ops, float);
|
|
} else {
|
|
TF_LITE_DEPTH_TO_SPACE(optimized_ops, float);
|
|
}
|
|
break;
|
|
case kTfLiteUInt8:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_DEPTH_TO_SPACE(reference_ops, uint8_t);
|
|
} else {
|
|
TF_LITE_DEPTH_TO_SPACE(optimized_ops, uint8_t);
|
|
}
|
|
break;
|
|
case kTfLiteInt8:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_DEPTH_TO_SPACE(reference_ops, int8_t);
|
|
} else {
|
|
TF_LITE_DEPTH_TO_SPACE(optimized_ops, int8_t);
|
|
}
|
|
break;
|
|
case kTfLiteInt32:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_DEPTH_TO_SPACE(reference_ops, int32_t);
|
|
} else {
|
|
TF_LITE_DEPTH_TO_SPACE(optimized_ops, int32_t);
|
|
}
|
|
break;
|
|
case kTfLiteInt64:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_DEPTH_TO_SPACE(reference_ops, int64_t);
|
|
} else {
|
|
TF_LITE_DEPTH_TO_SPACE(optimized_ops, int64_t);
|
|
}
|
|
break;
|
|
default:
|
|
context->ReportError(context, "Type '%s' not currently supported.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
#undef TF_LITE_DEPTH_TO_SPACE
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace depth_to_space
|
|
|
|
TfLiteRegistration* Register_DEPTH_TO_SPACE_REF() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, depth_to_space::Prepare,
|
|
depth_to_space::Eval<depth_to_space::kReference>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_DEPTH_TO_SPACE_GENERIC_OPT() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, depth_to_space::Prepare,
|
|
depth_to_space::Eval<depth_to_space::kGenericOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_DEPTH_TO_SPACE() {
|
|
return Register_DEPTH_TO_SPACE_GENERIC_OPT();
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|