STT-tensorflow/tensorflow/lite/kernels/detection_postprocess_test.cc
A. Unique TensorFlower 40bd5a4d99 Relax ValidateBoxes check to tolerate degenerated boxes in detection post-proc
It could happen that some boxes have the same value for xmin and xmax, and for
ymin and ymax.

PiperOrigin-RevId: 347844274
Change-Id: Ib44aca22fb537deb04367eaecabed48fc01080c2
2020-12-16 10:08:30 -08:00

863 lines
32 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <initializer_list>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "flatbuffers/flexbuffers.h" // from @flatbuffers
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace ops {
namespace custom {
TfLiteRegistration* Register_DETECTION_POSTPROCESS();
namespace {
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
// Tests for scenarios where we DO NOT set use_regular_nms flag
class BaseDetectionPostprocessOpModel : public SingleOpModel {
public:
BaseDetectionPostprocessOpModel(const TensorData& input1,
const TensorData& input2,
const TensorData& input3,
const TensorData& output1,
const TensorData& output2,
const TensorData& output3,
const TensorData& output4) {
input1_ = AddInput(input1);
input2_ = AddInput(input2);
input3_ = AddInput(input3);
output1_ = AddOutput(output1);
output2_ = AddOutput(output2);
output3_ = AddOutput(output3);
output4_ = AddOutput(output4);
flexbuffers::Builder fbb;
fbb.Map([&]() {
fbb.Int("max_detections", 3);
fbb.Int("max_classes_per_detection", 1);
fbb.Float("nms_score_threshold", 0.0);
fbb.Float("nms_iou_threshold", 0.5);
fbb.Int("num_classes", 2);
fbb.Float("y_scale", 10.0);
fbb.Float("x_scale", 10.0);
fbb.Float("h_scale", 5.0);
fbb.Float("w_scale", 5.0);
});
fbb.Finish();
SetCustomOp("TFLite_Detection_PostProcess", fbb.GetBuffer(),
Register_DETECTION_POSTPROCESS);
BuildInterpreter({GetShape(input1_), GetShape(input2_), GetShape(input3_)});
}
int input1() { return input1_; }
int input2() { return input2_; }
int input3() { return input3_; }
template <class T>
void SetInput1(std::initializer_list<T> data) {
PopulateTensor<T>(input1_, data);
}
template <class T>
void SetInput2(std::initializer_list<T> data) {
PopulateTensor<T>(input2_, data);
}
template <class T>
void SetInput3(std::initializer_list<T> data) {
PopulateTensor<T>(input3_, data);
}
template <class T>
std::vector<T> GetOutput1() {
return ExtractVector<T>(output1_);
}
template <class T>
std::vector<T> GetOutput2() {
return ExtractVector<T>(output2_);
}
template <class T>
std::vector<T> GetOutput3() {
return ExtractVector<T>(output3_);
}
template <class T>
std::vector<T> GetOutput4() {
return ExtractVector<T>(output4_);
}
std::vector<int> GetOutputShape1() { return GetTensorShape(output1_); }
std::vector<int> GetOutputShape2() { return GetTensorShape(output2_); }
std::vector<int> GetOutputShape3() { return GetTensorShape(output3_); }
std::vector<int> GetOutputShape4() { return GetTensorShape(output4_); }
protected:
int input1_;
int input2_;
int input3_;
int output1_;
int output2_;
int output3_;
int output4_;
};
TEST(DetectionPostprocessOpTest, FloatTest) {
BaseDetectionPostprocessOpModel m(
{TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 3}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}});
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
});
// class scores - two classes with background
m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0.,
.5, .4, 0., .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
// Same boxes in box-corner encoding:
// { 0.0, 0.0, 1.0, 1.0,
// 0.0, 0.1, 1.0, 1.1,
// 0.0, -0.1, 1.0, 0.9,
// 0.0, 10.0, 1.0, 11.0,
// 0.0, 10.1, 1.0, 11.1,
// 0.0, 100.0, 1.0, 101.0}
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
1e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-4)));
}
// Tests the case when a box degenerates to a point (xmin==xmax, ymin==ymax).
TEST(DetectionPostprocessOpTest, FloatTestWithDegeneratedBox) {
BaseDetectionPostprocessOpModel m(
{TensorType_FLOAT32, {1, 2, 4}}, {TensorType_FLOAT32, {1, 2, 3}},
{TensorType_FLOAT32, {2, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}});
// two boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 0.0, 0.0, 0.0, // box #2
});
// class scores - two classes with background
m.SetInput2<float>({
/*background*/ 0., /*class 0*/ .9, /*class 1*/ .8, // box #1
/*background*/ 0., /*class 0*/ .2, /*class 1*/ .7 // box #2
});
// two anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 0.0, 0.0 // anchor #2 - DEGENERATED!
});
// Same boxes in box-corner encoding:
// { 0.0, 0.0, 1.0, 1.0,
// 0.5, 0.5, 0.5, 0.5} // DEGENERATED!
// NOTE: this is used instead of `m.Invoke()` to make sure the entire test
// gets aborted if an error occurs (which does not happen when e.g. ASSERT_EQ
// is used in such a helper function).
ASSERT_EQ(m.InvokeUnchecked(), kTfLiteOk);
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
const int num_detections = static_cast<int>(m.GetOutput4<float>()[0]);
EXPECT_EQ(num_detections, 2);
// detection_boxes
std::vector<int> output_shape1 = m.GetOutputShape1();
// NOTE: there are up to 3 detected boxes as per `max_detections` and
// `max_classes_per_detection` parameters. But since the actual number of
// detections is 2 (see above) only the top-2 results are tested
// here and below.
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
std::vector<float> detection_boxes = m.GetOutput1<float>();
detection_boxes.resize(num_detections * 4);
EXPECT_THAT(detection_boxes,
ElementsAreArray(ArrayFloatNear({0.0, 0.0, 1.0, 1.0, // box #1
0.5, 0.5, 0.5, 0.5}, // box #2
1e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
std::vector<float> detection_classes = m.GetOutput2<float>();
detection_classes.resize(num_detections);
EXPECT_THAT(detection_classes,
ElementsAreArray(ArrayFloatNear({0, 1}, 1e-4)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
std::vector<float> detection_scores = m.GetOutput3<float>();
detection_scores.resize(num_detections);
EXPECT_THAT(detection_scores,
ElementsAreArray(ArrayFloatNear({0.9, 0.7}, 1e-4)));
}
TEST(DetectionPostprocessOpTest, QuantizedTest) {
BaseDetectionPostprocessOpModel m(
{TensorType_UINT8, {1, 6, 4}, -1.0, 1.0},
{TensorType_UINT8, {1, 6, 3}, 0.0, 1.0},
{TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}});
// six boxes in center-size encoding
std::vector<std::vector<float>> inputs1 = {{
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]);
// class scores - two classes with background
std::vector<std::vector<float>> inputs2 = {{0., .9, .8, 0., .75, .72, 0., .6,
.5, 0., .93, .95, 0., .5, .4, 0.,
.3, .2}};
m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]);
// six anchors in center-size encoding
std::vector<std::vector<float>> inputs3 = {{
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]);
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
3e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-1)));
}
// Tests for scenarios where we set use_regular_nms flag
class DetectionPostprocessOpModelwithRegularNMS : public SingleOpModel {
public:
DetectionPostprocessOpModelwithRegularNMS(
const TensorData& input1, const TensorData& input2,
const TensorData& input3, const TensorData& output1,
const TensorData& output2, const TensorData& output3,
const TensorData& output4, bool use_regular_nms) {
input1_ = AddInput(input1);
input2_ = AddInput(input2);
input3_ = AddInput(input3);
output1_ = AddOutput(output1);
output2_ = AddOutput(output2);
output3_ = AddOutput(output3);
output4_ = AddOutput(output4);
flexbuffers::Builder fbb;
fbb.Map([&]() {
fbb.Int("max_detections", 3);
fbb.Int("max_classes_per_detection", 1);
fbb.Int("detections_per_class", 1);
fbb.Bool("use_regular_nms", use_regular_nms);
fbb.Float("nms_score_threshold", 0.0);
fbb.Float("nms_iou_threshold", 0.5);
fbb.Int("num_classes", 2);
fbb.Float("y_scale", 10.0);
fbb.Float("x_scale", 10.0);
fbb.Float("h_scale", 5.0);
fbb.Float("w_scale", 5.0);
});
fbb.Finish();
SetCustomOp("TFLite_Detection_PostProcess", fbb.GetBuffer(),
Register_DETECTION_POSTPROCESS);
BuildInterpreter({GetShape(input1_), GetShape(input2_), GetShape(input3_)});
}
int input1() { return input1_; }
int input2() { return input2_; }
int input3() { return input3_; }
template <class T>
void SetInput1(std::initializer_list<T> data) {
PopulateTensor<T>(input1_, data);
}
template <class T>
void SetInput2(std::initializer_list<T> data) {
PopulateTensor<T>(input2_, data);
}
template <class T>
void SetInput3(std::initializer_list<T> data) {
PopulateTensor<T>(input3_, data);
}
template <class T>
std::vector<T> GetOutput1() {
return ExtractVector<T>(output1_);
}
template <class T>
std::vector<T> GetOutput2() {
return ExtractVector<T>(output2_);
}
template <class T>
std::vector<T> GetOutput3() {
return ExtractVector<T>(output3_);
}
template <class T>
std::vector<T> GetOutput4() {
return ExtractVector<T>(output4_);
}
std::vector<int> GetOutputShape1() { return GetTensorShape(output1_); }
std::vector<int> GetOutputShape2() { return GetTensorShape(output2_); }
std::vector<int> GetOutputShape3() { return GetTensorShape(output3_); }
std::vector<int> GetOutputShape4() { return GetTensorShape(output4_); }
protected:
int input1_;
int input2_;
int input3_;
int output1_;
int output2_;
int output3_;
int output4_;
};
TEST(DetectionPostprocessOpTest, FloatTestFastNMS) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 3}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
});
// class scores - two classes with background
m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0.,
.5, .4, 0., .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
// Same boxes in box-corner encoding:
// { 0.0, 0.0, 1.0, 1.0,
// 0.0, 0.1, 1.0, 1.1,
// 0.0, -0.1, 1.0, 0.9,
// 0.0, 10.0, 1.0, 11.0,
// 0.0, 10.1, 1.0, 11.1,
// 0.0, 100.0, 1.0, 101.0}
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
1e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-4)));
}
TEST(DetectionPostprocessOpTest, QuantizedTestFastNMS) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_UINT8, {1, 6, 4}, -1.0, 1.0},
{TensorType_UINT8, {1, 6, 3}, 0.0, 1.0},
{TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
std::vector<std::vector<float>> inputs1 = {{
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]);
// class scores - two classes with background
std::vector<std::vector<float>> inputs2 = {{0., .9, .8, 0., .75, .72, 0., .6,
.5, 0., .93, .95, 0., .5, .4, 0.,
.3, .2}};
m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]);
// six anchors in center-size encoding
std::vector<std::vector<float>> inputs3 = {{
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]);
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
3e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-1)));
}
TEST(DetectionPostprocessOpTest, FloatTestRegularNMS) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 3}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, true);
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
});
// class scores - two classes with background
m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0.,
.5, .4, 0., .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear({0.0, 10.0, 1.0, 11.0, 0.0, 10.0,
1.0, 11.0, 0.0, 0.0, 0.0, 0.0},
3e-4)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.93, 0.0}, 1e-4)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({2.0}, 1e-4)));
}
TEST(DetectionPostprocessOpTest, QuantizedTestRegularNMS) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_UINT8, {1, 6, 4}, -1.0, 1.0},
{TensorType_UINT8, {1, 6, 3}, 0.0, 1.0},
{TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, true);
// six boxes in center-size encoding
std::vector<std::vector<float>> inputs1 = {{
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]);
// class scores - two classes with background
std::vector<std::vector<float>> inputs2 = {{0., .9, .8, 0., .75, .72, 0., .6,
.5, 0., .93, .95, 0., .5, .4, 0.,
.3, .2}};
m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]);
// six anchors in center-size encoding
std::vector<std::vector<float>> inputs3 = {{
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]);
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear({0.0, 10.0, 1.0, 11.0, 0.0, 10.0,
1.0, 11.0, 0.0, 0.0, 0.0, 0.0},
3e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.0}, 1e-1)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({2.0}, 1e-1)));
}
TEST(DetectionPostprocessOpTest, FloatTestwithNoBackgroundClassAndNoKeypoints) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 2}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
});
// class scores - two classes without background
m.SetInput2<float>({.9, .8, .75, .72, .6, .5, .93, .95, .5, .4, .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
1e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-1)));
}
TEST(DetectionPostprocessOpTest, FloatTestwithBackgroundClassAndKeypoints) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_FLOAT32, {1, 6, 5}}, {TensorType_FLOAT32, {1, 6, 3}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, 1.0, // box #1
0.0, 1.0, 0.0, 0.0, 1.0, // box #2
0.0, -1.0, 0.0, 0.0, 1.0, // box #3
0.0, 0.0, 0.0, 0.0, 1.0, // box #4
0.0, 1.0, 0.0, 0.0, 1.0, // box #5
0.0, 0.0, 0.0, 0.0, 1.0, // box #6
});
// class scores - two classes with background
m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0.,
.5, .4, 0., .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
1e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-4)));
}
TEST(DetectionPostprocessOpTest,
QuantizedTestwithNoBackgroundClassAndKeypoints) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_UINT8, {1, 6, 5}, -1.0, 1.0},
{TensorType_UINT8, {1, 6, 2}, 0.0, 1.0},
{TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
std::vector<std::vector<float>> inputs1 = {{
0.0, 0.0, 0.0, 0.0, 1.0, // box #1
0.0, 1.0, 0.0, 0.0, 1.0, // box #2
0.0, -1.0, 0.0, 0.0, 1.0, // box #3
0.0, 0.0, 0.0, 0.0, 1.0, // box #4
0.0, 1.0, 0.0, 0.0, 1.0, // box #5
0.0, 0.0, 0.0, 0.0, 1.0 // box #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]);
// class scores - two classes with background
std::vector<std::vector<float>> inputs2 = {
{.9, .8, .75, .72, .6, .5, .93, .95, .5, .4, .3, .2}};
m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]);
// six anchors in center-size encoding
std::vector<std::vector<float>> inputs3 = {{
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]);
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
3e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-1)));
}
TEST(DetectionPostprocessOpTest, FloatTestwithNoBackgroundClassAndKeypoints) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_FLOAT32, {1, 6, 5}}, {TensorType_FLOAT32, {1, 6, 2}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, 1.0, // box #1
0.0, 1.0, 0.0, 0.0, 1.0, // box #2
0.0, -1.0, 0.0, 0.0, 1.0, // box #3
0.0, 0.0, 0.0, 0.0, 1.0, // box #4
0.0, 1.0, 0.0, 0.0, 1.0, // box #5
0.0, 0.0, 0.0, 0.0, 1.0, // box #6
});
// class scores - two classes with no background
m.SetInput2<float>({.9, .8, .75, .72, .6, .5, .93, .95, .5, .4, .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
1e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-4)));
}
} // namespace
} // namespace custom
} // namespace ops
} // namespace tflite