Change 109730179 Add support for selecting partition strategy in tf.nn.embedding_lookup and related ops, and allow unequally-sized shards to be used as input. Change 109729548 TensorFlow: add RELEASE.md notes for 0.6.0. Change 109728185 Make seq2seq_test non-flaky by setting python and numpy random seed. Change 109725913 Refactor slot creation in optimizers and moving averages to separate file Change 109718024 TensorFlow: reduce runtime of seq2seq_test from ~30s to ~18s. Change 109712251 More performance improvement for convnet on GPU. + Switch forward convolution format to NCHW. + Allocate scratch space for forward- and backward- convolutions. + Users can use "TF_CUDNN_WORKSPACE_LIMIT_IN_MB" to configure the scratch space limit. The default limit in 1GB. Change 109710898 Added extract_sub_graph utility function Base CL: 109731609
565 lines
22 KiB
Python
565 lines
22 KiB
Python
# Copyright 2015 Google Inc. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Functional tests for ops used with embeddings."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import itertools
|
|
|
|
import tensorflow.python.platform
|
|
|
|
import numpy as np
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
import tensorflow as tf
|
|
|
|
|
|
def _AsLong(array):
|
|
"""Casts arrays elements to long type. Used to convert from numpy tf."""
|
|
return [int(x) for x in array]
|
|
|
|
|
|
class ScatterAddSubTest(tf.test.TestCase):
|
|
|
|
def _TestCase(self, shape, indices, scatter_op=tf.scatter_add):
|
|
"""Run a random test case with the given shape and indices.
|
|
|
|
Args:
|
|
shape: Shape of the parameters array.
|
|
indices: One-dimensional array of ints, the indices of the last dimension
|
|
of the parameters to update.
|
|
scatter_op: ScatterAdd or ScatterSub.
|
|
"""
|
|
super(ScatterAddSubTest, self).setUp()
|
|
with self.test_session(use_gpu=False):
|
|
# Create a random parameter array of given shape
|
|
p_init = np.random.rand(*shape).astype("f")
|
|
# Create the shape of the update array. All dimensions except the last
|
|
# match the parameter array, the last dimension equals the # of indices.
|
|
vals_shape = [len(indices)] + shape[1:]
|
|
vals_init = np.random.rand(*vals_shape).astype("f")
|
|
v_i = [float(x) for x in vals_init.ravel()]
|
|
p = tf.Variable(p_init)
|
|
vals = tf.constant(v_i, shape=vals_shape, name="vals")
|
|
ind = tf.constant(indices, dtype=tf.int32)
|
|
p2 = scatter_op(p, ind, vals, name="updated_p")
|
|
# p = init
|
|
tf.initialize_all_variables().run()
|
|
# p += vals
|
|
result = p2.eval()
|
|
# Compute the expected 'p' using numpy operations.
|
|
for i, ind in enumerate(indices):
|
|
if scatter_op == tf.scatter_add:
|
|
p_init.reshape(shape[0], -1)[ind, :] += (
|
|
vals_init.reshape(vals_shape[0], -1)[i, :])
|
|
else:
|
|
p_init.reshape(shape[0], -1)[ind, :] -= (
|
|
vals_init.reshape(vals_shape[0], -1)[i, :])
|
|
self.assertTrue(all((p_init == result).ravel()))
|
|
|
|
def testNoRepetitions(self):
|
|
self._TestCase([2, 2], [1])
|
|
self._TestCase([4, 4, 4], [2, 0])
|
|
self._TestCase([43, 20, 10, 10], [42, 5, 6, 1, 3, 5, 7, 9])
|
|
|
|
def testWithRepetitions(self):
|
|
self._TestCase([2, 2], [1, 1])
|
|
self._TestCase([5, 3, 9, 5], [2, 0, 4, 1, 3, 1, 4, 0, 4, 3])
|
|
self._TestCase([32, 4, 4], [31] * 8)
|
|
|
|
def testRandom(self):
|
|
# Random shapes of rank 4, random indices
|
|
for _ in range(5):
|
|
shape = np.random.randint(1, 20, size=4)
|
|
indices = np.random.randint(shape[0], size=2 * shape[0])
|
|
self._TestCase(_AsLong(list(shape)), list(indices))
|
|
|
|
def testSubRandom(self):
|
|
# Random shapes of rank 4, random indices
|
|
for _ in range(5):
|
|
shape = np.random.randint(1, 20, size=4)
|
|
indices = np.random.randint(shape[0], size=2 * shape[0])
|
|
self._TestCase(_AsLong(list(shape)), list(indices),
|
|
tf.scatter_sub)
|
|
|
|
def testWrongShape(self):
|
|
# Indices and values mismatch.
|
|
var = tf.Variable(tf.zeros(shape=[1024, 64, 64], dtype=tf.float32))
|
|
indices = tf.placeholder(tf.int32, shape=[32])
|
|
values = tf.placeholder(tf.float32, shape=[33, 64, 64])
|
|
with self.assertRaises(ValueError):
|
|
tf.scatter_add(var, indices, values)
|
|
|
|
# Var and values mismatch.
|
|
values = tf.placeholder(tf.float32, shape=[32, 64, 63])
|
|
with self.assertRaises(ValueError):
|
|
tf.scatter_add(var, indices, values)
|
|
|
|
|
|
def _PName(param_id):
|
|
return "p" + str(param_id)
|
|
|
|
|
|
def _EmbeddingParams(num_shards, vocab_size,
|
|
dtype=tf.float32,
|
|
shape=None,
|
|
use_shapeless_placeholder=False):
|
|
p = []
|
|
params = {}
|
|
feed_dict = {}
|
|
if not shape: shape = [10]
|
|
for i in range(num_shards):
|
|
shard_shape = [vocab_size // num_shards] + shape
|
|
if i < vocab_size % num_shards: # Excess goes evenly on the first shards
|
|
shard_shape[0] += 1
|
|
|
|
param_name = _PName(i)
|
|
|
|
if use_shapeless_placeholder:
|
|
param = tf.placeholder(dtype, shape=None, name=param_name)
|
|
else:
|
|
param = tf.constant(1.0, shape=shard_shape, dtype=dtype, name=param_name)
|
|
p.append(param)
|
|
np_type = "f" if dtype == tf.float32 else "d"
|
|
val = (np.random.rand(*shard_shape).astype(np_type)) + 1
|
|
params[param_name + ":0"] = val
|
|
feed_dict[param.name] = val
|
|
return p, params, feed_dict
|
|
|
|
|
|
def _EmbeddingResult(params, id_vals, num_shards, vocab_size,
|
|
partition_strategy="mod",
|
|
weight_vals=None):
|
|
if weight_vals is None:
|
|
weight_vals = np.copy(id_vals)
|
|
weight_vals.fill(1)
|
|
values = []
|
|
weights = []
|
|
for ids, wts in zip(id_vals, weight_vals):
|
|
val_aggr = None
|
|
wt_aggr = None
|
|
if isinstance(ids, tf.compat.integral_types):
|
|
ids = [ids]
|
|
wts = [wts]
|
|
for i, wt_val in zip(ids, wts):
|
|
if partition_strategy == "mod":
|
|
val = np.copy(params[_PName(i % num_shards) + ":0"][
|
|
i // num_shards, :]) * wt_val
|
|
elif partition_strategy == "div":
|
|
ids_per_partition, extras = divmod(vocab_size, num_shards)
|
|
threshold = extras * (ids_per_partition + 1)
|
|
if i < threshold:
|
|
partition = i // (ids_per_partition + 1)
|
|
offset = i % (ids_per_partition + 1)
|
|
else:
|
|
partition = extras + (i - threshold) // ids_per_partition
|
|
offset = (i - threshold) % ids_per_partition
|
|
val = np.copy(
|
|
params[_PName(partition) + ":0"][offset, :]) * wt_val
|
|
else:
|
|
assert False
|
|
if val_aggr is None:
|
|
assert wt_aggr is None
|
|
val_aggr = val
|
|
wt_aggr = wt_val
|
|
else:
|
|
assert wt_aggr is not None
|
|
val_aggr += val
|
|
wt_aggr += wt_val
|
|
values.append(val_aggr)
|
|
weights.append(wt_aggr)
|
|
values = np.array(values).astype(np.float32)
|
|
weights = np.array(weights).astype(np.float32)
|
|
return values, weights
|
|
|
|
|
|
class EmbeddingLookupTest(tf.test.TestCase):
|
|
|
|
# This test looks up [0, 0] in a parameter matrix sharded 2 ways. Since
|
|
# both the ids are in the first shard, one of the resulting lookup
|
|
# vector is going to be empty. The subsequent DivOp fails because of that.
|
|
# TODO(keveman): Disabling the test until the underlying problem is fixed.
|
|
def testSimpleSharded(self):
|
|
with self.test_session():
|
|
num_shards = 2
|
|
vocab_size = 4
|
|
p, params, feed_dict = _EmbeddingParams(num_shards, vocab_size)
|
|
|
|
id_vals = np.array([0, 0])
|
|
ids = tf.constant(list(id_vals), dtype=tf.int32)
|
|
print("Construct ids", ids.get_shape())
|
|
embedding = tf.nn.embedding_lookup(p, ids)
|
|
|
|
tf_result = embedding.eval(feed_dict=feed_dict)
|
|
np_result, _ = _EmbeddingResult(params, id_vals, num_shards, vocab_size)
|
|
self.assertAllEqual(np_result, tf_result)
|
|
self.assertShapeEqual(np_result, embedding)
|
|
|
|
def testShardedModPartitioningInt32Ids(self):
|
|
with self.test_session():
|
|
num_shards = 5
|
|
vocab_size = 13
|
|
# Embedding dimensions is 10. The vocab_size x 10 embedding
|
|
# parameters are spread in num_shards matrices, so the first
|
|
# 3 shards are 3 x 10 and the last 2 shards are 2 x 10.
|
|
p, params, feed_dict = _EmbeddingParams(num_shards, vocab_size)
|
|
|
|
num_vals = 30
|
|
# Fetch num_vals embeddings for random word ids. Since
|
|
# num_vals > vocab_size, this ought to have repetitions, so
|
|
# will test that aspect.
|
|
id_vals = np.random.randint(vocab_size, size=num_vals)
|
|
ids = tf.constant(list(id_vals), dtype=tf.int32)
|
|
|
|
embedding = tf.nn.embedding_lookup(p, ids)
|
|
tf_result = embedding.eval(feed_dict=feed_dict)
|
|
np_result, _ = _EmbeddingResult(params, id_vals, num_shards, vocab_size)
|
|
self.assertAllEqual(np_result, tf_result)
|
|
self.assertShapeEqual(np_result, embedding)
|
|
|
|
def testShardedModPartitioningInt64Ids(self):
|
|
with self.test_session():
|
|
num_shards = 5
|
|
vocab_size = 13
|
|
# Embedding dimensions is 10. The vocab_size x 10 embedding
|
|
# parameters are spread in num_shards matrices, so the first
|
|
# 3 shards are 3 x 10 and the last 2 shards are 2 x 10.
|
|
p, params, feed_dict = _EmbeddingParams(num_shards, vocab_size)
|
|
|
|
num_vals = 30
|
|
# Fetch num_vals embeddings for random word ids. Since
|
|
# num_vals > vocab_size, this ought to have repetitions, so
|
|
# will test that aspect.
|
|
id_vals = np.random.randint(vocab_size, size=num_vals)
|
|
ids = tf.constant(list(id_vals), dtype=tf.int64)
|
|
|
|
embedding = tf.nn.embedding_lookup(p, ids)
|
|
tf_result = embedding.eval(feed_dict=feed_dict)
|
|
np_result, _ = _EmbeddingResult(params, id_vals, num_shards, vocab_size)
|
|
self.assertAllEqual(np_result, tf_result)
|
|
self.assertShapeEqual(np_result, embedding)
|
|
|
|
def testShardedDivPartitioningInt32Ids(self):
|
|
with self.test_session():
|
|
num_shards = 5
|
|
vocab_size = 13
|
|
# Embedding dimensions is 10. The vocab_size x 10 embedding
|
|
# parameters are spread in num_shards matrices, so the first
|
|
# 3 shards are 3 x 10 and the last 2 shards are 2 x 10.
|
|
p, params, feed_dict = _EmbeddingParams(num_shards, vocab_size)
|
|
|
|
num_vals = 30
|
|
# Fetch num_vals embeddings for random word ids. Since
|
|
# num_vals > vocab_size, this ought to have repetitions, so
|
|
# will test that aspect.
|
|
id_vals = np.random.randint(vocab_size, size=num_vals)
|
|
ids = tf.constant(list(id_vals), dtype=tf.int32)
|
|
|
|
embedding = tf.nn.embedding_lookup(p, ids, partition_strategy="div")
|
|
tf_result = embedding.eval(feed_dict=feed_dict)
|
|
np_result, _ = _EmbeddingResult(
|
|
params, id_vals, num_shards, vocab_size, partition_strategy="div")
|
|
self.assertAllEqual(np_result, tf_result)
|
|
self.assertShapeEqual(np_result, embedding)
|
|
|
|
def testShardedDivPartitioningInt64Ids(self):
|
|
with self.test_session():
|
|
num_shards = 5
|
|
vocab_size = 13
|
|
# Embedding dimensions is 10. The vocab_size x 10 embedding
|
|
# parameters are spread in num_shards matrices, so the first
|
|
# 3 shards are 3 x 10 and the last 2 shards are 2 x 10.
|
|
p, params, feed_dict = _EmbeddingParams(num_shards, vocab_size)
|
|
|
|
num_vals = 30
|
|
# Fetch num_vals embeddings for random word ids. Since
|
|
# num_vals > vocab_size, this ought to have repetitions, so
|
|
# will test that aspect.
|
|
id_vals = np.random.randint(vocab_size, size=num_vals)
|
|
ids = tf.constant(list(id_vals), dtype=tf.int64)
|
|
|
|
embedding = tf.nn.embedding_lookup(p, ids, partition_strategy="div")
|
|
tf_result = embedding.eval(feed_dict=feed_dict)
|
|
np_result, _ = _EmbeddingResult(
|
|
params, id_vals, num_shards, vocab_size, partition_strategy="div")
|
|
self.assertAllEqual(np_result, tf_result)
|
|
self.assertShapeEqual(np_result, embedding)
|
|
|
|
def testShardedDivPartitioningUnknownParamShape(self):
|
|
with self.test_session():
|
|
num_shards = 5
|
|
vocab_size = 13
|
|
# Embedding dimensions is 10. The vocab_size x 10 embedding
|
|
# parameters are spread in num_shards matrices, so the first
|
|
# 3 shards are 3 x 10 and the last 2 shards are 2 x 10.
|
|
|
|
# We clear parameter shapes, to test when shape is not statically known.
|
|
p, params, feed_dict = _EmbeddingParams(
|
|
num_shards, vocab_size, use_shapeless_placeholder=True)
|
|
|
|
num_vals = 30
|
|
# Fetch num_vals embeddings for random word ids. Since
|
|
# num_vals > vocab_size, this ought to have repetitions, so
|
|
# will test that aspect.
|
|
id_vals = np.random.randint(vocab_size, size=num_vals)
|
|
ids = tf.constant(list(id_vals), dtype=tf.int64)
|
|
|
|
embedding = tf.nn.embedding_lookup(p, ids, partition_strategy="div")
|
|
tf_result = embedding.eval(feed_dict=feed_dict)
|
|
np_result, _ = _EmbeddingResult(
|
|
params, id_vals, num_shards, vocab_size, partition_strategy="div")
|
|
self.assertAllEqual(np_result, tf_result)
|
|
|
|
def testGradientsEmbeddingLookup(self):
|
|
vocab_size = 9
|
|
num_ids = 5
|
|
id_vals = list(np.random.randint(vocab_size, size=num_ids))
|
|
tf.logging.vlog(1, id_vals)
|
|
for num_shards in [1, 3]:
|
|
with self.test_session():
|
|
ids = tf.constant(id_vals, dtype=tf.int32)
|
|
x, params, _ = _EmbeddingParams(
|
|
num_shards, vocab_size, shape=[2])
|
|
y = tf.nn.embedding_lookup(x, ids)
|
|
y_shape = [num_ids] + list(params[_PName(0) + ":0"].shape[1:])
|
|
x_name = [_PName(i) for i in range(num_shards)]
|
|
x_init_value = [params[x_n + ":0"] for x_n in x_name]
|
|
x_shape = [i.shape for i in x_init_value]
|
|
err = tf.test.compute_gradient_error(x,
|
|
x_shape,
|
|
y,
|
|
y_shape,
|
|
x_init_value=x_init_value)
|
|
self.assertLess(err, 1e-4)
|
|
|
|
def testGradientsEmbeddingLookupWithComputedParams(self):
|
|
vocab_size = 9
|
|
num_ids = 5
|
|
id_vals = list(np.random.randint(vocab_size, size=num_ids))
|
|
tf.logging.vlog(1, id_vals)
|
|
for num_shards in [1, 3]:
|
|
with self.test_session():
|
|
ids = tf.constant(id_vals, dtype=tf.int32)
|
|
x, params, _ = _EmbeddingParams(
|
|
num_shards, vocab_size, shape=[2])
|
|
# This will force a conversion from IndexedSlices to Tensor.
|
|
x_squared = [tf.square(elem) for elem in x]
|
|
y = tf.nn.embedding_lookup(x_squared, ids)
|
|
y_shape = [num_ids] + list(params[_PName(0) + ":0"].shape[1:])
|
|
x_name = [_PName(i) for i in range(num_shards)]
|
|
x_init_value = [params[x_n + ":0"] for x_n in x_name]
|
|
x_shape = [i.shape for i in x_init_value]
|
|
err = tf.test.compute_gradient_error(x,
|
|
x_shape,
|
|
y,
|
|
y_shape,
|
|
x_init_value=x_init_value)
|
|
self.assertLess(err, 1e-3)
|
|
|
|
def testConstructionNonSharded(self):
|
|
with tf.Graph().as_default():
|
|
p = tf.Variable(tf.zeros(shape=[100, 100], dtype=tf.float32))
|
|
ids = tf.constant([0, 1, 1, 7], dtype=tf.int32)
|
|
tf.nn.embedding_lookup([p], ids)
|
|
|
|
def testConstructionSharded(self):
|
|
with tf.Graph().as_default():
|
|
p = []
|
|
for _ in range(2):
|
|
p += [tf.Variable(tf.zeros(shape=[100, 100], dtype=tf.float32))]
|
|
ids = tf.constant([0, 1, 1, 17], dtype=tf.int32)
|
|
tf.nn.embedding_lookup(p, ids)
|
|
|
|
def testHigherRank(self):
|
|
np.random.seed(8)
|
|
with self.test_session():
|
|
for params_shape in (12,), (6, 3):
|
|
params = np.random.randn(*params_shape)
|
|
for ids_shape in (3, 2), (4, 3):
|
|
ids = np.random.randint(params.shape[0],
|
|
size=np.prod(ids_shape)).reshape(ids_shape)
|
|
# Compare nonsharded to gather
|
|
simple = tf.nn.embedding_lookup(params, ids).eval()
|
|
self.assertAllEqual(simple, tf.gather(params, ids).eval())
|
|
# Run a few random sharded versions
|
|
for procs in 1, 2, 3:
|
|
stride = procs * tf.range(params.shape[0] // procs)
|
|
split_params = [tf.gather(params, stride + p)
|
|
for p in xrange(procs)]
|
|
sharded = tf.nn.embedding_lookup(split_params, ids).eval()
|
|
self.assertAllEqual(simple, sharded)
|
|
|
|
|
|
class EmbeddingLookupSparseTest(tf.test.TestCase):
|
|
|
|
def _RandomIdsAndWeights(self, batch_size, vocab_size):
|
|
max_val_per_entry = 6
|
|
vals_per_batch_entry = np.random.randint(
|
|
1, max_val_per_entry, size=batch_size)
|
|
num_vals = np.sum(vals_per_batch_entry)
|
|
|
|
ids = np.random.randint(vocab_size, size=num_vals)
|
|
weights = 1 + np.random.rand(num_vals)
|
|
|
|
indices = []
|
|
for batch_entry, num_val in enumerate(vals_per_batch_entry):
|
|
for val_index in range(num_val):
|
|
indices.append([batch_entry, val_index])
|
|
|
|
shape = [batch_size, max_val_per_entry]
|
|
|
|
sp_ids = tf.SparseTensor(
|
|
tf.constant(indices, tf.int64),
|
|
tf.constant(ids, tf.int32),
|
|
tf.constant(shape, tf.int64))
|
|
sp_weights = tf.SparseTensor(
|
|
tf.constant(indices, tf.int64),
|
|
tf.constant(weights, tf.float32),
|
|
tf.constant(shape, tf.int64))
|
|
|
|
return sp_ids, sp_weights, ids, weights, vals_per_batch_entry
|
|
|
|
def _GroupByBatchEntry(self, vals, vals_per_batch_entry):
|
|
grouped_vals = []
|
|
index = 0
|
|
for num_val in vals_per_batch_entry:
|
|
grouped_vals.append(list(vals[index: (index + num_val)]))
|
|
index += num_val
|
|
return grouped_vals
|
|
|
|
def testEmbeddingLookupSparse(self):
|
|
vocab_size = 13
|
|
batch_size = 10
|
|
param_shape = [2, 5]
|
|
|
|
sp_ids, sp_weights, ids, weights, vals_per_batch_entry = (
|
|
self._RandomIdsAndWeights(batch_size, vocab_size))
|
|
|
|
grouped_ids = self._GroupByBatchEntry(ids, vals_per_batch_entry)
|
|
grouped_weights = self._GroupByBatchEntry(weights, vals_per_batch_entry)
|
|
grouped_ignored_weights = self._GroupByBatchEntry(
|
|
np.ones(np.sum(vals_per_batch_entry)), vals_per_batch_entry)
|
|
|
|
for num_shards, combiner, dtype, ignore_weights in itertools.product(
|
|
[1, 5],
|
|
["sum", "mean"],
|
|
[tf.float32, tf.float64],
|
|
[True, False]):
|
|
|
|
with self.test_session():
|
|
p, params, feed_dict = _EmbeddingParams(num_shards, vocab_size,
|
|
shape=param_shape,
|
|
dtype=dtype)
|
|
embedding_sum = tf.nn.embedding_lookup_sparse(
|
|
p, sp_ids, None if ignore_weights else sp_weights,
|
|
combiner=combiner)
|
|
tf_embedding_sum = embedding_sum.eval(feed_dict=feed_dict)
|
|
|
|
np_embedding_sum, np_weight_sum = _EmbeddingResult(
|
|
params, grouped_ids, num_shards, vocab_size,
|
|
weight_vals=grouped_ignored_weights
|
|
if ignore_weights else grouped_weights)
|
|
if combiner == "mean":
|
|
np_embedding_sum /= np.reshape(np_weight_sum, (batch_size, 1, 1))
|
|
self.assertAllClose(np_embedding_sum, tf_embedding_sum)
|
|
|
|
def testGradientsEmbeddingLookupSparse(self):
|
|
vocab_size = 12
|
|
batch_size = 4
|
|
param_shape = [2, 3]
|
|
sp_ids, sp_weights, _, _, _ = (
|
|
self._RandomIdsAndWeights(batch_size, vocab_size))
|
|
|
|
for num_shards, combiner, dtype, ignore_weights in itertools.product(
|
|
[1, 3],
|
|
["sum", "mean"],
|
|
[tf.float32, tf.float64],
|
|
[True, False]):
|
|
with self.test_session():
|
|
x, params, _ = _EmbeddingParams(num_shards, vocab_size,
|
|
shape=param_shape,
|
|
dtype=dtype)
|
|
|
|
y = tf.nn.embedding_lookup_sparse(
|
|
x, sp_ids, None if ignore_weights else sp_weights,
|
|
combiner=combiner)
|
|
x_name = [_PName(i) for i in range(num_shards)]
|
|
x_init_value = [params[x_n + ":0"] for x_n in x_name]
|
|
x_shape = [i.shape for i in x_init_value]
|
|
y_shape = [batch_size] + list(params[_PName(0) + ":0"].shape[1:])
|
|
err = tf.test.compute_gradient_error(x,
|
|
x_shape,
|
|
y,
|
|
y_shape,
|
|
x_init_value=x_init_value)
|
|
self.assertLess(err, 1e-5 if dtype == tf.float64 else 2e-3)
|
|
|
|
|
|
class DynamicStitchOpTest(tf.test.TestCase):
|
|
|
|
def testCint32Cpu(self):
|
|
with self.test_session(use_gpu=False):
|
|
indices = [tf.convert_to_tensor([0, 1, 2]), tf.convert_to_tensor([2, 3])]
|
|
values = [tf.convert_to_tensor([12, 23, 34]), tf.convert_to_tensor([1, 2])]
|
|
self.assertAllEqual(
|
|
tf.dynamic_stitch(indices, values).eval(), [12, 23, 1, 2])
|
|
|
|
def testCint32Gpu(self):
|
|
with self.test_session(use_gpu=True):
|
|
indices = [tf.convert_to_tensor([0, 1, 2]), tf.convert_to_tensor([2, 3])]
|
|
values = [tf.convert_to_tensor([12, 23, 34]), tf.convert_to_tensor([1, 2])]
|
|
self.assertAllEqual(
|
|
tf.dynamic_stitch(indices, values).eval(), [12, 23, 1, 2])
|
|
|
|
def testInt32Cpu(self):
|
|
with self.test_session(use_gpu=False):
|
|
indices = [tf.convert_to_tensor([0, 1, 2]), tf.convert_to_tensor([2, 3])]
|
|
values = [tf.convert_to_tensor([12, 23, 34]), tf.convert_to_tensor([1, 2])]
|
|
self.assertAllEqual(
|
|
tf.dynamic_stitch(indices, values).eval(), [12, 23, 1, 2])
|
|
|
|
def testInt32Gpu(self):
|
|
with self.test_session(use_gpu=True):
|
|
indices = [tf.convert_to_tensor([0, 1, 2]), tf.convert_to_tensor([2, 3])]
|
|
values = [tf.convert_to_tensor([12, 23, 34]), tf.convert_to_tensor([1, 2])]
|
|
self.assertAllEqual(
|
|
tf.dynamic_stitch(indices, values).eval(), [12, 23, 1, 2])
|
|
|
|
def testSumGradArgs(self):
|
|
with self.test_session(use_gpu=False):
|
|
indices = [tf.convert_to_tensor([0, 1, 2, 3]),
|
|
tf.convert_to_tensor([2, 3])]
|
|
values = [tf.convert_to_tensor([2, 3, 5, 7]), tf.convert_to_tensor([1, 1])]
|
|
self.assertAllEqual(
|
|
tf.dynamic_stitch(indices, values).eval(), [2, 3, 1, 1])
|
|
|
|
# We expect that the values are merged in order.
|
|
def testStitchOrder(self):
|
|
with self.test_session():
|
|
indices = []
|
|
np_values = []
|
|
values = []
|
|
for _ in range(10):
|
|
indices.extend([tf.convert_to_tensor(np.arange(100).astype(np.int32))])
|
|
np_values.extend([np.random.uniform(size=100)])
|
|
values.extend([tf.convert_to_tensor(np_values[-1])])
|
|
stitched = tf.dynamic_stitch(indices, values).eval()
|
|
self.assertAllEqual(np_values[-1], stitched)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tf.test.main()
|