STT-tensorflow/tensorflow/python/keras/utils/version_utils.py
Thomas O'Malley 2ba59dab2c Simplify Layer.add_udpate in v2 and update version_selector to use v1 inside a
tf.compat.v1.wrap_function.

No longer track unused Layer.updates in v2.

PiperOrigin-RevId: 316921838
Change-Id: I4698a0c925528594f402f824705d66b8a1ae7b72
2020-06-17 11:01:44 -07:00

127 lines
4.6 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
"""Utilities for Keras classes with v1 and v2 versions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from tensorflow.python.util import lazy_loader
# TODO(b/134426265): Switch back to single-quotes once the issue
# with copybara is fixed.
# pylint: disable=g-inconsistent-quotes
training = lazy_loader.LazyLoader(
"training", globals(),
"tensorflow.python.keras.engine.training")
training_v1 = lazy_loader.LazyLoader(
"training_v1", globals(),
"tensorflow.python.keras.engine.training_v1")
base_layer = lazy_loader.LazyLoader(
"base_layer", globals(),
"tensorflow.python.keras.engine.base_layer")
base_layer_v1 = lazy_loader.LazyLoader(
"base_layer_v1", globals(),
"tensorflow.python.keras.engine.base_layer_v1")
callbacks = lazy_loader.LazyLoader(
"callbacks", globals(),
"tensorflow.python.keras.callbacks")
callbacks_v1 = lazy_loader.LazyLoader(
"callbacks_v1", globals(),
"tensorflow.python.keras.callbacks_v1")
# pylint: enable=g-inconsistent-quotes
class ModelVersionSelector(object):
"""Chooses between Keras v1 and v2 Model class."""
def __new__(cls, *args, **kwargs): # pylint: disable=unused-argument
use_v2 = should_use_v2()
cls = swap_class(cls, training.Model, training_v1.Model, use_v2) # pylint: disable=self-cls-assignment
return super(ModelVersionSelector, cls).__new__(cls)
class LayerVersionSelector(object):
"""Chooses between Keras v1 and v2 Layer class."""
def __new__(cls, *args, **kwargs): # pylint: disable=unused-argument
use_v2 = should_use_v2()
cls = swap_class(cls, base_layer.Layer, base_layer_v1.Layer, use_v2) # pylint: disable=self-cls-assignment
return super(LayerVersionSelector, cls).__new__(cls)
class TensorBoardVersionSelector(object):
"""Chooses between Keras v1 and v2 TensorBoard callback class."""
def __new__(cls, *args, **kwargs): # pylint: disable=unused-argument
use_v2 = should_use_v2()
start_cls = cls
cls = swap_class(start_cls, callbacks.TensorBoard, callbacks_v1.TensorBoard,
use_v2)
if start_cls == callbacks_v1.TensorBoard and cls == callbacks.TensorBoard:
# Since the v2 class is not a subclass of the v1 class, __init__ has to
# be called manually.
return cls(*args, **kwargs)
return super(TensorBoardVersionSelector, cls).__new__(cls)
def should_use_v2():
"""Determine if v1 or v2 version should be used."""
if context.executing_eagerly():
return True
elif ops.executing_eagerly_outside_functions():
# Check for a v1 `wrap_function` FuncGraph.
# Code inside a `wrap_function` is treated like v1 code.
graph = ops.get_default_graph()
if (getattr(graph, "name", False) and
graph.name.startswith("wrapped_function")):
return False
return True
def swap_class(cls, v2_cls, v1_cls, use_v2):
"""Swaps in v2_cls or v1_cls depending on graph mode."""
if cls == object:
return cls
if cls in (v2_cls, v1_cls):
if use_v2:
return v2_cls
return v1_cls
# Recursively search superclasses to swap in the right Keras class.
cls.__bases__ = tuple(
swap_class(base, v2_cls, v1_cls, use_v2) for base in cls.__bases__)
return cls
def disallow_legacy_graph(cls_name, method_name):
if not ops.executing_eagerly_outside_functions():
error_msg = (
"Calling `{cls_name}.{method_name}` in graph mode is not supported "
"when the `{cls_name}` instance was constructed with eager mode "
"enabled. Please construct your `{cls_name}` instance in graph mode or"
" call `{cls_name}.{method_name}` with eager mode enabled.")
error_msg = error_msg.format(cls_name=cls_name, method_name=method_name)
raise ValueError(error_msg)
def is_v1_layer_or_model(obj):
return isinstance(obj, (base_layer_v1.Layer, training_v1.Model))