94 lines
3.0 KiB
C++
94 lines
3.0 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stdint.h>
|
|
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
class BaseAddNOpModel : public SingleOpModel {
|
|
public:
|
|
BaseAddNOpModel(const std::vector<TensorData>& inputs,
|
|
const TensorData& output) {
|
|
int num_inputs = inputs.size();
|
|
std::vector<std::vector<int>> input_shapes;
|
|
|
|
for (int i = 0; i < num_inputs; ++i) {
|
|
inputs_.push_back(AddInput(inputs[i]));
|
|
input_shapes.push_back(GetShape(inputs_[i]));
|
|
}
|
|
|
|
output_ = AddOutput(output);
|
|
SetBuiltinOp(BuiltinOperator_ADD_N, BuiltinOptions_AddNOptions,
|
|
CreateAddNOptions(builder_).Union());
|
|
BuildInterpreter(input_shapes);
|
|
}
|
|
|
|
int input(int i) { return inputs_[i]; }
|
|
|
|
protected:
|
|
std::vector<int> inputs_;
|
|
int output_;
|
|
};
|
|
|
|
class FloatAddNOpModel : public BaseAddNOpModel {
|
|
public:
|
|
using BaseAddNOpModel::BaseAddNOpModel;
|
|
|
|
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
|
|
};
|
|
|
|
class IntegerAddNOpModel : public BaseAddNOpModel {
|
|
public:
|
|
using BaseAddNOpModel::BaseAddNOpModel;
|
|
|
|
std::vector<int32_t> GetOutput() { return ExtractVector<int32_t>(output_); }
|
|
};
|
|
|
|
TEST(FloatAddNOpModel, AddMultipleTensors) {
|
|
FloatAddNOpModel m({{TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {1, 2, 2, 1}}},
|
|
{TensorType_FLOAT32, {}});
|
|
m.PopulateTensor<float>(m.input(0), {-2.0, 0.2, 0.7, 0.8});
|
|
m.PopulateTensor<float>(m.input(1), {0.1, 0.2, 0.3, 0.5});
|
|
m.PopulateTensor<float>(m.input(2), {0.5, 0.1, 0.1, 0.2});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1.4, 0.5, 1.1, 1.5}));
|
|
}
|
|
|
|
TEST(IntegerAddNOpModel, AddMultipleTensors) {
|
|
IntegerAddNOpModel m({{TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {1, 2, 2, 1}}},
|
|
{TensorType_INT32, {}});
|
|
m.PopulateTensor<int32_t>(m.input(0), {-20, 2, 7, 8});
|
|
m.PopulateTensor<int32_t>(m.input(1), {1, 2, 3, 5});
|
|
m.PopulateTensor<int32_t>(m.input(2), {10, -5, 1, -2});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-9, -1, 11, 11}));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|