STT-tensorflow/tensorflow/python/training/momentum_test.py
2020-01-16 14:36:52 +09:00

606 lines
27 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Momentum."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
from tensorflow.python.training import momentum as momentum_lib
class MomentumOptimizerTest(test.TestCase):
def _update_nesterov_momentum_numpy(self, var, accum, g, lr, momentum):
var = var + accum * lr * momentum
accum = accum * momentum + g
var = var - lr * accum
var = var - accum * lr * momentum
return var, accum
def doTestBasic(self, use_resource=False, use_callable_params=False):
for i, dtype in enumerate([dtypes.half, dtypes.float32, dtypes.float64]):
if use_resource:
var0 = resource_variable_ops.ResourceVariable(
[1.0, 2.0], dtype=dtype, name="var0_%d" % i)
var1 = resource_variable_ops.ResourceVariable(
[3.0, 4.0], dtype=dtype, name="var1_%d" % i)
else:
var0 = variables.Variable([1.0, 2.0], dtype=dtype)
var1 = variables.Variable([3.0, 4.0], dtype=dtype)
grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
learning_rate = lambda: 2.0
momentum = lambda: 0.9
if not use_callable_params:
learning_rate = learning_rate()
momentum = momentum()
mom_opt = momentum_lib.MomentumOptimizer(
learning_rate=learning_rate, momentum=momentum)
mom_update = mom_opt.apply_gradients(
zip([grads0, grads1], [var0, var1]))
if not context.executing_eagerly():
self.evaluate(variables.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Check we have slots
self.assertEqual(["momentum"], mom_opt.get_slot_names())
slot0 = mom_opt.get_slot(var0, "momentum")
self.assertEquals(slot0.get_shape(), var0.get_shape())
slot1 = mom_opt.get_slot(var1, "momentum")
self.assertEquals(slot1.get_shape(), var1.get_shape())
if not context.executing_eagerly():
self.assertFalse(slot0 in variables.trainable_variables())
self.assertFalse(slot1 in variables.trainable_variables())
# Step 1: the momentum accumulators where 0. So we should see a normal
# update: v -= grad * learning_rate
if not context.executing_eagerly():
self.evaluate(mom_update)
# Check that the momentum accumulators have been updated.
self.assertAllCloseAccordingToType(np.array([0.1, 0.1]),
self.evaluate(slot0))
self.assertAllCloseAccordingToType(np.array([0.01, 0.01]),
self.evaluate(slot1))
# Check that the parameters have been updated.
self.assertAllCloseAccordingToType(
np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]),
self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]),
self.evaluate(var1))
# Step 2: the momentum accumulators contain the previous update.
if context.executing_eagerly():
mom_opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
else:
self.evaluate(mom_update)
# Check that the momentum accumulators have been updated.
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]),
self.evaluate(slot0))
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]),
self.evaluate(slot1))
# Check that the parameters have been updated.
self.assertAllCloseAccordingToType(
np.array([
1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0),
2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0)
]), self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([
2.98 - ((0.9 * 0.01 + 0.01) * 2.0), 3.98 - (
(0.9 * 0.01 + 0.01) * 2.0)
]), self.evaluate(var1))
def testBasic(self):
with self.cached_session():
self.doTestBasic(use_resource=False)
@test_util.run_in_graph_and_eager_modes(reset_test=True)
def testResourceBasic(self):
self.doTestBasic(use_resource=True)
def testBasicCallableParams(self):
with context.eager_mode():
self.doTestBasic(use_resource=True, use_callable_params=True)
def testVariablesAcrossGraphs(self):
optimizer = momentum_lib.MomentumOptimizer(0.01, 0.5)
with ops.Graph().as_default():
var0 = resource_variable_ops.ResourceVariable(
[1.0, 2.0], dtype=dtypes.float32, name="var0")
var1 = resource_variable_ops.ResourceVariable(
[3.0, 4.0], dtype=dtypes.float32, name="var1")
loss = math_ops.reduce_sum(var0 + var1)
optimizer.minimize(loss)
optimizer_variables = optimizer.variables()
self.assertStartsWith(optimizer_variables[0].name, "var0")
self.assertStartsWith(optimizer_variables[1].name, "var1")
self.assertEquals(2, len(optimizer_variables))
with ops.Graph().as_default():
var2 = resource_variable_ops.ResourceVariable(
[1.0, 2.0], dtype=dtypes.float32, name="var2")
var3 = resource_variable_ops.ResourceVariable(
[3.0, 4.0], dtype=dtypes.float32, name="var3")
loss = math_ops.reduce_sum(var2 + var3)
optimizer.minimize(loss)
optimizer_variables = optimizer.variables()
self.assertStartsWith(optimizer_variables[0].name, "var2")
self.assertStartsWith(optimizer_variables[1].name, "var3")
self.assertEquals(2, len(optimizer_variables))
@test_util.run_deprecated_v1
def testNesterovMomentum(self):
for dtype in [dtypes.float32, dtypes.float64]:
with self.cached_session():
var0 = variables.Variable([1.0, 2.0], dtype=dtype)
var1 = variables.Variable([3.0, 4.0], dtype=dtype)
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
accum0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
accum1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
cost = 5 * var0 * var0 + 3 * var1
global_step = variables.Variable(
array_ops.zeros([], dtypes.int64), name="global_step")
mom_op = momentum_lib.MomentumOptimizer(
learning_rate=2.0, momentum=0.9, use_nesterov=True)
opt_op = mom_op.minimize(cost, global_step, [var0, var1])
variables.global_variables_initializer().run()
for t in range(1, 5):
opt_op.run()
var0_np, accum0_np = self._update_nesterov_momentum_numpy(
var0_np, accum0_np, var0_np * 10, 2.0, 0.9)
var1_np, accum1_np = self._update_nesterov_momentum_numpy(var1_np,
accum1_np,
3, 2.0, 0.9)
self.assertAllClose(var0_np, self.evaluate(var0))
self.assertAllClose(var1_np, self.evaluate(var1))
@test_util.run_deprecated_v1
def testSparseNesterovMomentum(self):
for dtype in [dtypes.float32, dtypes.float64]:
with self.cached_session():
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
accum0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
accum1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
grads = []
for t in range(1, 5):
grads.append(var0_np * 10)
var0_np, accum0_np = self._update_nesterov_momentum_numpy(
var0_np, accum0_np, var0_np * 10, 2.0, 0.9)
var1_np, accum1_np = self._update_nesterov_momentum_numpy(var1_np,
accum1_np,
3, 2.0, 0.9)
var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
accum0_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
accum1_np = np.array([0.0, 0.0], dtype=dtype.as_numpy_dtype)
var0 = variables.Variable(var0_np)
var1 = variables.Variable(var1_np)
loss = 5 * var0 * var0 + 3 * var1
mom_op = momentum_lib.MomentumOptimizer(
learning_rate=2.0, momentum=0.9, use_nesterov=True)
x_feed = array_ops.placeholder(dtype)
y_feed = ops.IndexedSlices(
x_feed, constant_op.constant([0, 1]), constant_op.constant([2]))
grads_and_vars = [(y_feed, var0), (constant_op.constant(
[3.0, 3.0], dtype=dtype), var1)]
opt_update = mom_op.apply_gradients(grads_and_vars)
variables.global_variables_initializer().run()
for t in range(1, 5):
opt_update.run(feed_dict={x_feed: grads[t - 1]})
var0_np, accum0_np = self._update_nesterov_momentum_numpy(
var0_np, accum0_np, var0_np * 10, 2.0, 0.9)
var1_np, accum1_np = self._update_nesterov_momentum_numpy(var1_np,
accum1_np,
3, 2.0, 0.9)
self.assertAllClose(var0_np, self.evaluate(var0))
self.assertAllClose(var1_np, self.evaluate(var1))
@test_util.run_in_graph_and_eager_modes(reset_test=True)
def testMinimizeSparseResourceVariable(self):
for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
# This test invokes the ResourceSparseApplyMomentum operation, which
# did not have a registered GPU kernel as of April 2018. With graph
# execution, the placement algorithm notices this and automatically
# places the variable in CPU (host) memory. With eager execution,
# the variable would be placed in GPU memory if available, which
# would then conflict with the future invocation of the
# ResourceSparseApplyMomentum operation.
# To work around this discrepancy, for now we force the variable
# to be placed on CPU.
with ops.device("/cpu:0"):
var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype)
# pylint: disable=cell-var-from-loop
def loss():
x = constant_op.constant([[4.0], [5.0]], dtype=dtype)
pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x)
return pred * pred
# pylint: enable=cell-var-from-loop
opt = momentum_lib.MomentumOptimizer(learning_rate=1.0, momentum=0.0)
sgd_op = opt.minimize(loss)
self.evaluate(variables.global_variables_initializer())
# Run 1 step of sgd
self.evaluate(sgd_op)
# Validate updated params
self.assertAllCloseAccordingToType([[-111, -138]], self.evaluate(var0))
@test_util.run_in_graph_and_eager_modes(reset_test=True)
def testMinimizeWith2DIndicesForEmbeddingLookup(self):
# This test invokes the ResourceSparseApplyMomentum operation, which
# did not have a registered GPU kernel as of April 2018. With graph
# execution, the placement algorithm notices this and automatically
# places the variable in CPU (host) memory. With eager execution,
# the variable would be placed in GPU memory if available, which
# would then conflict with the future invocation of the
# ResourceSparseApplyMomentum operation.
# To work around this discrepancy, for now we force the variable
# to be placed on CPU.
with ops.device("/cpu:0"):
var0 = resource_variable_ops.ResourceVariable(array_ops.ones([2, 2]))
def loss():
return math_ops.reduce_sum(embedding_ops.embedding_lookup(var0, [[1]]))
opt = momentum_lib.MomentumOptimizer(learning_rate=1.0, momentum=0.0)
sgd_op = opt.minimize(loss)
self.evaluate(variables.global_variables_initializer())
self.evaluate(sgd_op)
self.assertAllCloseAccordingToType([[1, 1], [0, 0]], self.evaluate(var0))
@test_util.run_deprecated_v1
def testTensorLearningRateAndMomentum(self):
for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
with self.cached_session():
var0 = variables.Variable([1.0, 2.0], dtype=dtype)
var1 = variables.Variable([3.0, 4.0], dtype=dtype)
grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
mom_opt = momentum_lib.MomentumOptimizer(
learning_rate=constant_op.constant(2.0),
momentum=constant_op.constant(0.9))
mom_update = mom_opt.apply_gradients(
zip([grads0, grads1], [var0, var1]))
variables.global_variables_initializer().run()
# Check we have slots
self.assertEqual(["momentum"], mom_opt.get_slot_names())
slot0 = mom_opt.get_slot(var0, "momentum")
self.assertEquals(slot0.get_shape(), var0.get_shape())
self.assertFalse(slot0 in variables.trainable_variables())
slot1 = mom_opt.get_slot(var1, "momentum")
self.assertEquals(slot1.get_shape(), var1.get_shape())
self.assertFalse(slot1 in variables.trainable_variables())
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Step 1: the momentum accumulators where 0. So we should see a normal
# update: v -= grad * learning_rate
mom_update.run()
# Check that the momentum accumulators have been updated.
self.assertAllCloseAccordingToType(
np.array([0.1, 0.1]), self.evaluate(slot0))
self.assertAllCloseAccordingToType(
np.array([0.01, 0.01]), self.evaluate(slot1))
# Check that the parameters have been updated.
self.assertAllCloseAccordingToType(
np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]),
self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]),
self.evaluate(var1))
# Step 2: the momentum accumulators contain the previous update.
mom_update.run()
# Check that the momentum accumulators have been updated.
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]),
self.evaluate(slot0))
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]),
self.evaluate(slot1))
# Check that the parameters have been updated.
self.assertAllCloseAccordingToType(
np.array([
1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0),
2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0)
]), self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([
2.98 - ((0.9 * 0.01 + 0.01) * 2.0),
3.98 - ((0.9 * 0.01 + 0.01) * 2.0)
]), self.evaluate(var1))
def _dbParamsMom01(self):
"""Return dist-belief momentum values.
Return values been generated from the dist-belief momentum unittest,
running with a learning rate of 0.1 and a momentum of 0.1.
These values record how a parameter vector of size 10, initialized with 0.0,
gets updated with 10 consecutive momentum steps. It uses random gradients.
Returns:
db_grad: The gradients to apply
db_out: The parameters after the momentum update.
"""
db_grad = [[]] * 10
db_out = [[]] * 10
# pylint: disable=line-too-long
db_grad[0] = [
0.00096264342, 0.17914793, 0.93945462, 0.41396621, 0.53037018,
0.93197989, 0.78648776, 0.50036013, 0.55345792, 0.96722615
]
db_out[0] = [
-9.6264346e-05, -0.017914793, -0.093945466, -0.041396622, -0.053037018,
-0.093197994, -0.078648776, -0.050036013, -0.055345792, -0.096722618
]
db_grad[1] = [
0.17075552, 0.88821375, 0.20873757, 0.25236958, 0.57578111, 0.15312378,
0.5513742, 0.94687688, 0.16012503, 0.22159521
]
db_out[1] = [
-0.017181443, -0.10852765, -0.12421377, -0.070773244, -0.11591884,
-0.11783017, -0.14165108, -0.14972731, -0.076892875, -0.1285544
]
db_grad[2] = [
0.35077485, 0.47304362, 0.44412705, 0.44368884, 0.078527533, 0.81223965,
0.31168157, 0.43203235, 0.16792089, 0.24644311
]
db_out[2] = [
-0.053967446, -0.1648933, -0.1716533, -0.1180798, -0.13005978,
-0.20151734, -0.17911947, -0.20289968, -0.095839672, -0.15638189
]
db_grad[3] = [
0.9694621, 0.75035888, 0.28171822, 0.83813518, 0.53807181, 0.3728098,
0.81454384, 0.03848977, 0.89759839, 0.93665648
]
db_out[3] = [
-0.15459226, -0.24556576, -0.20456907, -0.20662397, -0.18528105,
-0.24716705, -0.2643207, -0.21206589, -0.18749419, -0.2528303
]
db_grad[4] = [
0.38578293, 0.8536852, 0.88722926, 0.66276771, 0.13678469, 0.94036359,
0.69107032, 0.81897682, 0.5433259, 0.67860287
]
db_out[4] = [
-0.20323303, -0.33900154, -0.29658359, -0.28175515, -0.20448165,
-0.34576839, -0.34194785, -0.29488021, -0.25099224, -0.33033544
]
db_grad[5] = [
0.27885768, 0.76100707, 0.24625534, 0.81354135, 0.18959245, 0.48038563,
0.84163809, 0.41172323, 0.83259648, 0.44941229
]
db_out[5] = [
-0.23598288, -0.42444581, -0.33041057, -0.3706224, -0.22536094,
-0.40366709, -0.43387437, -0.34433398, -0.34060168, -0.38302717
]
db_grad[6] = [
0.27233034, 0.056316052, 0.5039115, 0.24105175, 0.35697976, 0.75913221,
0.73577434, 0.16014607, 0.57500273, 0.071136251
]
db_out[6] = [
-0.26649091, -0.43862185, -0.38418442, -0.40361428, -0.26314685,
-0.48537019, -0.51664448, -0.36529395, -0.40706289, -0.39540997
]
db_grad[7] = [
0.58697265, 0.2494842, 0.08106143, 0.39954534, 0.15892942, 0.12683646,
0.74053431, 0.16033, 0.66625422, 0.73515922
]
db_out[7] = [
-0.32823896, -0.46498787, -0.39766794, -0.446868, -0.28281838,
-0.50622416, -0.59897494, -0.38342294, -0.48033443, -0.47016418
]
db_grad[8] = [
0.8215279, 0.41994119, 0.95172721, 0.68000203, 0.79439718, 0.43384039,
0.55561525, 0.22567581, 0.93331909, 0.29438227
]
db_out[8] = [
-0.41656655, -0.50961858, -0.49418902, -0.51919359, -0.36422527,
-0.55169362, -0.6627695, -0.40780342, -0.58099347, -0.50707781
]
db_grad[9] = [
0.68297005, 0.67758518, 0.1748755, 0.13266537, 0.70697063, 0.055731893,
0.68593478, 0.50580865, 0.12602448, 0.093537711
]
db_out[9] = [
-0.49369633, -0.58184016, -0.52132869, -0.5396927, -0.44306302,
-0.56181377, -0.73774242, -0.46082234, -0.60366184, -0.52012295
]
# pylint: enable=line-too-long
return db_grad, db_out
@test_util.run_deprecated_v1
def testLikeDistBeliefMom01(self):
with self.cached_session():
db_grad, db_out = self._dbParamsMom01()
num_samples = len(db_grad)
var0 = variables.Variable([0.0] * num_samples)
grads0 = constant_op.constant([0.0] * num_samples)
mom_opt = momentum_lib.MomentumOptimizer(learning_rate=0.1, momentum=0.1)
mom_update = mom_opt.apply_gradients(zip([grads0], [var0]))
variables.global_variables_initializer().run()
for i in xrange(num_samples):
mom_update.run(feed_dict={grads0: db_grad[i]})
self.assertAllClose(np.array(db_out[i]), self.evaluate(var0))
@test_util.run_deprecated_v1
def testSparse(self):
for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
with self.cached_session():
var0 = variables.Variable(array_ops.zeros([4, 2], dtype=dtype))
var1 = variables.Variable(constant_op.constant(1.0, dtype, [4, 2]))
grads0 = ops.IndexedSlices(
constant_op.constant(
[[.1, .1]], dtype=dtype),
constant_op.constant([1]),
constant_op.constant([4, 2]))
grads1 = ops.IndexedSlices(
constant_op.constant(
[[.01, .01], [.01, .01]], dtype=dtype),
constant_op.constant([2, 3]),
constant_op.constant([4, 2]))
mom_opt = momentum_lib.MomentumOptimizer(
learning_rate=2.0, momentum=0.9)
mom_update = mom_opt.apply_gradients(
zip([grads0, grads1], [var0, var1]))
variables.global_variables_initializer().run()
# Check we have slots
self.assertEqual(["momentum"], mom_opt.get_slot_names())
slot0 = mom_opt.get_slot(var0, "momentum")
self.assertEquals(slot0.get_shape(), var0.get_shape())
slot1 = mom_opt.get_slot(var1, "momentum")
self.assertEquals(slot1.get_shape(), var1.get_shape())
# Fetch params to validate initial values
self.assertAllClose([0, 0], self.evaluate(var0)[0])
self.assertAllClose([0, 0], self.evaluate(var0)[1])
self.assertAllClose([1, 1], self.evaluate(var1)[2])
# Step 1: the momentum accumulators are 0. So we should see a normal
# update: v -= grad * learning_rate
mom_update.run()
# Check that the momentum accumulators have been updated.
self.assertAllCloseAccordingToType(
np.array([0, 0]),
self.evaluate(slot0)[0])
self.assertAllCloseAccordingToType(
np.array([.1, .1]),
self.evaluate(slot0)[1])
self.assertAllCloseAccordingToType(
np.array([.01, .01]),
self.evaluate(slot1)[2])
# Check that the parameters have been updated.
self.assertAllCloseAccordingToType(
np.array([0, 0]),
self.evaluate(var0)[0])
self.assertAllCloseAccordingToType(
np.array([-(0.1 * 2.0), -(0.1 * 2.0)]),
self.evaluate(var0)[1])
self.assertAllCloseAccordingToType(
np.array([1.0 - (0.01 * 2.0), 1.0 - (0.01 * 2.0)]),
self.evaluate(var1)[2])
# Step 2: the momentum accumulators contain the previous update.
mom_update.run()
# Check that the momentum accumulators have been updated.
self.assertAllClose(np.array([0, 0]), self.evaluate(slot0)[0])
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]),
self.evaluate(slot0)[1])
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]),
self.evaluate(slot1)[2])
# Check that the parameters have been updated.
self.assertAllClose(np.array([0, 0]), self.evaluate(var0)[0])
self.assertAllCloseAccordingToType(
np.array([
-(0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0),
-(0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0)
]),
self.evaluate(var0)[1])
self.assertAllCloseAccordingToType(
np.array([
0.98 - ((0.9 * 0.01 + 0.01) * 2.0),
0.98 - ((0.9 * 0.01 + 0.01) * 2.0)
]),
self.evaluate(var1)[2])
@test_util.run_deprecated_v1
def testSharing(self):
for dtype in [dtypes.half, dtypes.float32, dtypes.float64]:
with self.cached_session():
var0 = variables.Variable([1.0, 2.0], dtype=dtype)
var1 = variables.Variable([3.0, 4.0], dtype=dtype)
grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
mom_opt = momentum_lib.MomentumOptimizer(
learning_rate=2.0, momentum=0.9)
mom_update1 = mom_opt.apply_gradients(
zip([grads0, grads1], [var0, var1]))
mom_update2 = mom_opt.apply_gradients(
zip([grads0, grads1], [var0, var1]))
variables.global_variables_initializer().run()
self.assertEqual(["momentum"], mom_opt.get_slot_names())
slot0 = mom_opt.get_slot(var0, "momentum")
self.assertEquals(slot0.get_shape(), var0.get_shape())
slot1 = mom_opt.get_slot(var1, "momentum")
self.assertEquals(slot1.get_shape(), var1.get_shape())
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Step 1: the momentum accumulators where 0. So we should see a normal
# update: v -= grad * learning_rate
mom_update1.run()
# Check that the momentum accumulators have been updated.
self.assertAllCloseAccordingToType(
np.array([0.1, 0.1]), self.evaluate(slot0))
self.assertAllCloseAccordingToType(
np.array([0.01, 0.01]), self.evaluate(slot1))
# Check that the parameters have been updated.
self.assertAllCloseAccordingToType(
np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]),
self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]),
self.evaluate(var1))
# Step 2: the second momentum accumulators contain the previous update.
mom_update2.run()
# Check that the momentum accumulators have been updated.
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]),
self.evaluate(slot0))
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]),
self.evaluate(slot1))
# Check that the parameters have been updated.
self.assertAllCloseAccordingToType(
np.array([
1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0),
2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0)
]), self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([
2.98 - ((0.9 * 0.01 + 0.01) * 2.0),
3.98 - ((0.9 * 0.01 + 0.01) * 2.0)
]), self.evaluate(var1))
if __name__ == "__main__":
test.main()