tf.test now has appropriate snake case function names (get_temp_dir and is_built_with_cuda) and has normal toplevel module documentation. Also fix a bug in make_all. Change: 114351269
127 lines
3.9 KiB
Python
127 lines
3.9 KiB
Python
# Copyright 2015 Google Inc. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for fft operations.
|
|
"""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import tensorflow.python.platform
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
|
|
class FFT2DOpsTest(tf.test.TestCase):
|
|
|
|
def _tfFFT2D(self, x, use_gpu=False):
|
|
with self.test_session(use_gpu=use_gpu):
|
|
return tf.fft2d(x).eval()
|
|
|
|
def _npFFT2D(self, x):
|
|
return np.fft.fft2(x)
|
|
|
|
def _tfIFFT2D(self, x, use_gpu=False):
|
|
with self.test_session(use_gpu=use_gpu):
|
|
return tf.ifft2d(x).eval()
|
|
|
|
def _npIFFT2D(self, x):
|
|
return np.fft.ifft2(x)
|
|
|
|
def _Compare(self, x):
|
|
if tf.test.is_built_with_cuda():
|
|
# GPU/Forward
|
|
self.assertAllClose(
|
|
self._npFFT2D(x),
|
|
self._tfFFT2D(x,
|
|
use_gpu=True),
|
|
rtol=1e-4,
|
|
atol=1e-4)
|
|
# GPU/Backward
|
|
self.assertAllClose(
|
|
self._npIFFT2D(x),
|
|
self._tfIFFT2D(x,
|
|
use_gpu=True),
|
|
rtol=1e-4,
|
|
atol=1e-4)
|
|
|
|
def testBasic(self):
|
|
self._Compare(np.arange(60).reshape([6, 10]))
|
|
self._Compare(np.arange(60).reshape([10, 6]))
|
|
|
|
def testRandom(self):
|
|
np.random.seed(12345)
|
|
|
|
def gen(shape):
|
|
n = np.prod(shape)
|
|
re = np.random.uniform(size=n)
|
|
im = np.random.uniform(size=n)
|
|
return (re + im * 1j).reshape(shape)
|
|
|
|
for shape in [(1, 1), (5, 5), (5, 7), (7, 5), (100, 250)]:
|
|
self._Compare(gen(shape))
|
|
|
|
def testEmpty(self):
|
|
if tf.test.is_built_with_cuda():
|
|
x = np.zeros([40, 0]).astype(np.complex64)
|
|
self.assertEqual(x.shape, self._tfFFT2D(x).shape)
|
|
self.assertEqual(x.shape, self._tfIFFT2D(x).shape)
|
|
|
|
def testError(self):
|
|
if tf.test.is_built_with_cuda():
|
|
x = np.zeros([1, 2, 3]).astype(np.complex64)
|
|
with self.assertRaisesOpError("Input is not a matrix"):
|
|
self._tfFFT2D(x)
|
|
with self.assertRaisesOpError("Input is not a matrix"):
|
|
self._tfIFFT2D(x)
|
|
|
|
def _checkGrad(self, func, x, y, use_gpu=False):
|
|
with self.test_session(use_gpu=use_gpu):
|
|
inx = tf.convert_to_tensor(x)
|
|
iny = tf.convert_to_tensor(y)
|
|
# func = fft2d or ifft2d
|
|
z = func(tf.complex(inx, iny))
|
|
# loss = sum(|z|^2)
|
|
loss = tf.reduce_sum(tf.real(z * tf.conj(z)))
|
|
((x_jacob_t, x_jacob_n),
|
|
(y_jacob_t, y_jacob_n)) = tf.test.compute_gradient(
|
|
[inx, iny],
|
|
[list(x.shape), list(y.shape)],
|
|
loss,
|
|
[1],
|
|
x_init_value=[x, y],
|
|
delta=1e-2)
|
|
self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=1e-2)
|
|
self.assertAllClose(y_jacob_t, y_jacob_n, rtol=1e-2, atol=1e-2)
|
|
|
|
def testGrad_Simple(self):
|
|
if tf.test.is_built_with_cuda():
|
|
re = np.array([[1., 0.], [0., 1.]]).astype(np.float32)
|
|
im = np.array([[0., 0.], [0., 0.]]).astype(np.float32)
|
|
self._checkGrad(tf.fft2d, re, im, use_gpu=True)
|
|
self._checkGrad(tf.ifft2d, re, im, use_gpu=True)
|
|
|
|
def testGrad_Random(self):
|
|
if tf.test.is_built_with_cuda():
|
|
shape = (4, 8)
|
|
np.random.seed(54321)
|
|
re = np.random.rand(*shape).astype(np.float32) * 2 - 1
|
|
im = np.random.rand(*shape).astype(np.float32) * 2 - 1
|
|
self._checkGrad(tf.fft2d, re, im, use_gpu=True)
|
|
self._checkGrad(tf.ifft2d, re, im, use_gpu=True)
|
|
|
|
if __name__ == "__main__":
|
|
tf.test.main()
|