1322 lines
40 KiB
Python
1322 lines
40 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Helper classes for tensor shape inference."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import functools
|
|
import operator
|
|
import six
|
|
|
|
from tensorflow.core.framework import tensor_shape_pb2
|
|
from tensorflow.python import tf2
|
|
from tensorflow.python.eager import monitoring
|
|
from tensorflow.python.util.tf_export import tf_export
|
|
|
|
_TENSORSHAPE_V2_OVERRIDE = None
|
|
|
|
_api_usage_gauge = monitoring.BoolGauge(
|
|
"/tensorflow/api/v2_tensorshape",
|
|
"Whether tensor_shape.enable_v2_tensorshape() is called.")
|
|
|
|
|
|
@tf_export(v1=["enable_v2_tensorshape"])
|
|
def enable_v2_tensorshape():
|
|
"""In TensorFlow 2.0, iterating over a TensorShape instance returns values.
|
|
|
|
This enables the new behavior.
|
|
|
|
Concretely, `tensor_shape[i]` returned a Dimension instance in V1, but
|
|
it V2 it returns either an integer, or None.
|
|
|
|
Examples:
|
|
|
|
```
|
|
#######################
|
|
# If you had this in V1:
|
|
value = tensor_shape[i].value
|
|
|
|
# Do this in V2 instead:
|
|
value = tensor_shape[i]
|
|
|
|
#######################
|
|
# If you had this in V1:
|
|
for dim in tensor_shape:
|
|
value = dim.value
|
|
print(value)
|
|
|
|
# Do this in V2 instead:
|
|
for value in tensor_shape:
|
|
print(value)
|
|
|
|
#######################
|
|
# If you had this in V1:
|
|
dim = tensor_shape[i]
|
|
dim.assert_is_compatible_with(other_shape) # or using any other shape method
|
|
|
|
# Do this in V2 instead:
|
|
if tensor_shape.rank is None:
|
|
dim = Dimension(None)
|
|
else:
|
|
dim = tensor_shape.dims[i]
|
|
dim.assert_is_compatible_with(other_shape) # or using any other shape method
|
|
|
|
# The V2 suggestion above is more explicit, which will save you from
|
|
# the following trap (present in V1):
|
|
# you might do in-place modifications to `dim` and expect them to be reflected
|
|
# in `tensor_shape[i]`, but they would not be.
|
|
```
|
|
"""
|
|
global _TENSORSHAPE_V2_OVERRIDE # pylint: disable=invalid-name
|
|
_TENSORSHAPE_V2_OVERRIDE = True
|
|
_api_usage_gauge.get_cell().set(True)
|
|
|
|
|
|
@tf_export(v1=["disable_v2_tensorshape"])
|
|
def disable_v2_tensorshape():
|
|
"""Disables the V2 TensorShape behavior and reverts to V1 behavior.
|
|
|
|
See docstring for `enable_v2_tensorshape` for details about the new behavior.
|
|
"""
|
|
global _TENSORSHAPE_V2_OVERRIDE # pylint: disable=invalid-name
|
|
_TENSORSHAPE_V2_OVERRIDE = False
|
|
_api_usage_gauge.get_cell().set(False)
|
|
|
|
|
|
@tf_export(
|
|
"compat.dimension_value", v1=["dimension_value", "compat.dimension_value"])
|
|
def dimension_value(dimension):
|
|
"""Compatibility utility required to allow for both V1 and V2 behavior in TF.
|
|
|
|
Until the release of TF 2.0, we need the legacy behavior of `TensorShape` to
|
|
coexist with the new behavior. This utility is a bridge between the two.
|
|
|
|
When accessing the value of a TensorShape dimension,
|
|
use this utility, like this:
|
|
|
|
```
|
|
# If you had this in your V1 code:
|
|
value = tensor_shape[i].value
|
|
|
|
# Use `dimension_value` as direct replacement compatible with both V1 & V2:
|
|
value = dimension_value(tensor_shape[i])
|
|
|
|
# This would be the V2 equivalent:
|
|
value = tensor_shape[i] # Warning: this will return the dim value in V2!
|
|
```
|
|
|
|
Args:
|
|
dimension: Either a `Dimension` instance, an integer, or None.
|
|
|
|
Returns:
|
|
A plain value, i.e. an integer or None.
|
|
"""
|
|
if isinstance(dimension, Dimension):
|
|
return dimension.value
|
|
return dimension
|
|
|
|
|
|
@tf_export(
|
|
"compat.dimension_at_index",
|
|
v1=["dimension_at_index", "compat.dimension_at_index"])
|
|
def dimension_at_index(shape, index):
|
|
"""Compatibility utility required to allow for both V1 and V2 behavior in TF.
|
|
|
|
Until the release of TF 2.0, we need the legacy behavior of `TensorShape` to
|
|
coexist with the new behavior. This utility is a bridge between the two.
|
|
|
|
If you want to retrieve the Dimension instance corresponding to a certain
|
|
index in a TensorShape instance, use this utility, like this:
|
|
|
|
```
|
|
# If you had this in your V1 code:
|
|
dim = tensor_shape[i]
|
|
|
|
# Use `dimension_at_index` as direct replacement compatible with both V1 & V2:
|
|
dim = dimension_at_index(tensor_shape, i)
|
|
|
|
# Another possibility would be this, but WARNING: it only works if the
|
|
# tensor_shape instance has a defined rank.
|
|
dim = tensor_shape.dims[i] # `dims` may be None if the rank is undefined!
|
|
|
|
# In native V2 code, we recommend instead being more explicit:
|
|
if tensor_shape.rank is None:
|
|
dim = Dimension(None)
|
|
else:
|
|
dim = tensor_shape.dims[i]
|
|
|
|
# Being more explicit will save you from the following trap (present in V1):
|
|
# you might do in-place modifications to `dim` and expect them to be reflected
|
|
# in `tensor_shape[i]`, but they would not be (as the Dimension object was
|
|
# instantiated on the fly.
|
|
```
|
|
|
|
Args:
|
|
shape: A TensorShape instance.
|
|
index: An integer index.
|
|
|
|
Returns:
|
|
A dimension object.
|
|
"""
|
|
assert isinstance(shape, TensorShape)
|
|
if shape.rank is None:
|
|
return Dimension(None)
|
|
else:
|
|
return shape.dims[index]
|
|
|
|
|
|
@tf_export(v1=["Dimension"])
|
|
class Dimension(object):
|
|
"""Represents the value of one dimension in a TensorShape."""
|
|
|
|
__slots__ = ["_value"]
|
|
|
|
def __init__(self, value):
|
|
"""Creates a new Dimension with the given value."""
|
|
if isinstance(value, int): # Most common case.
|
|
if value < 0:
|
|
raise ValueError("Dimension %d must be >= 0" % value)
|
|
self._value = value
|
|
elif value is None:
|
|
self._value = None
|
|
elif isinstance(value, Dimension):
|
|
self._value = value._value
|
|
else:
|
|
try:
|
|
# int(...) compensates for the int/long dichotomy on Python 2.X.
|
|
# TODO(b/143206389): Remove once we fully migrate to 3.X.
|
|
self._value = int(value.__index__())
|
|
except AttributeError:
|
|
six.raise_from(
|
|
TypeError("Dimension value must be integer or None or have "
|
|
"an __index__ method, got value '{0!r}' with type '{1!r}'"
|
|
.format(value, type(value))), None)
|
|
if self._value < 0:
|
|
raise ValueError("Dimension %d must be >= 0" % self._value)
|
|
|
|
def __repr__(self):
|
|
return "Dimension(%s)" % repr(self._value)
|
|
|
|
def __str__(self):
|
|
value = self._value
|
|
return "?" if value is None else str(value)
|
|
|
|
def __eq__(self, other):
|
|
"""Returns true if `other` has the same known value as this Dimension."""
|
|
try:
|
|
other = as_dimension(other)
|
|
except (TypeError, ValueError):
|
|
return NotImplemented
|
|
if self._value is None or other.value is None:
|
|
return None
|
|
return self._value == other.value
|
|
|
|
def __ne__(self, other):
|
|
"""Returns true if `other` has a different known value from `self`."""
|
|
try:
|
|
other = as_dimension(other)
|
|
except (TypeError, ValueError):
|
|
return NotImplemented
|
|
if self._value is None or other.value is None:
|
|
return None
|
|
return self._value != other.value
|
|
|
|
def __int__(self):
|
|
return self._value
|
|
|
|
# This is needed for Windows.
|
|
# See https://github.com/tensorflow/tensorflow/pull/9780
|
|
def __long__(self):
|
|
return self._value
|
|
|
|
def __index__(self):
|
|
# Allow use in Python 3 range
|
|
return self._value
|
|
|
|
@property
|
|
def value(self):
|
|
"""The value of this dimension, or None if it is unknown."""
|
|
return self._value
|
|
|
|
def is_compatible_with(self, other):
|
|
"""Returns true if `other` is compatible with this Dimension.
|
|
|
|
Two known Dimensions are compatible if they have the same value.
|
|
An unknown Dimension is compatible with all other Dimensions.
|
|
|
|
Args:
|
|
other: Another Dimension.
|
|
|
|
Returns:
|
|
True if this Dimension and `other` are compatible.
|
|
"""
|
|
other = as_dimension(other)
|
|
return (self._value is None or other.value is None or
|
|
self._value == other.value)
|
|
|
|
def assert_is_compatible_with(self, other):
|
|
"""Raises an exception if `other` is not compatible with this Dimension.
|
|
|
|
Args:
|
|
other: Another Dimension.
|
|
|
|
Raises:
|
|
ValueError: If `self` and `other` are not compatible (see
|
|
is_compatible_with).
|
|
"""
|
|
if not self.is_compatible_with(other):
|
|
raise ValueError("Dimensions %s and %s are not compatible" %
|
|
(self, other))
|
|
|
|
def merge_with(self, other):
|
|
"""Returns a Dimension that combines the information in `self` and `other`.
|
|
|
|
Dimensions are combined as follows:
|
|
|
|
```python
|
|
tf.compat.v1.Dimension(n) .merge_with(tf.compat.v1.Dimension(n)) ==
|
|
tf.compat.v1.Dimension(n)
|
|
tf.compat.v1.Dimension(n) .merge_with(tf.compat.v1.Dimension(None)) ==
|
|
tf.compat.v1.Dimension(n)
|
|
tf.compat.v1.Dimension(None).merge_with(tf.compat.v1.Dimension(n)) ==
|
|
tf.compat.v1.Dimension(n)
|
|
# equivalent to tf.compat.v1.Dimension(None)
|
|
tf.compat.v1.Dimension(None).merge_with(tf.compat.v1.Dimension(None))
|
|
|
|
# raises ValueError for n != m
|
|
tf.compat.v1.Dimension(n) .merge_with(tf.compat.v1.Dimension(m))
|
|
```
|
|
|
|
Args:
|
|
other: Another Dimension.
|
|
|
|
Returns:
|
|
A Dimension containing the combined information of `self` and
|
|
`other`.
|
|
|
|
Raises:
|
|
ValueError: If `self` and `other` are not compatible (see
|
|
is_compatible_with).
|
|
"""
|
|
other = as_dimension(other)
|
|
self.assert_is_compatible_with(other)
|
|
if self._value is None:
|
|
return Dimension(other.value)
|
|
else:
|
|
return Dimension(self._value)
|
|
|
|
def __add__(self, other):
|
|
"""Returns the sum of `self` and `other`.
|
|
|
|
Dimensions are summed as follows:
|
|
|
|
```python
|
|
tf.compat.v1.Dimension(m) + tf.compat.v1.Dimension(n) ==
|
|
tf.compat.v1.Dimension(m + n)
|
|
tf.compat.v1.Dimension(m) + tf.compat.v1.Dimension(None) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
tf.compat.v1.Dimension(None) + tf.compat.v1.Dimension(n) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
tf.compat.v1.Dimension(None) + tf.compat.v1.Dimension(None) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
```
|
|
|
|
Args:
|
|
other: Another Dimension, or a value accepted by `as_dimension`.
|
|
|
|
Returns:
|
|
A Dimension whose value is the sum of `self` and `other`.
|
|
"""
|
|
try:
|
|
other = as_dimension(other)
|
|
except (TypeError, ValueError):
|
|
return NotImplemented
|
|
if self._value is None or other.value is None:
|
|
return Dimension(None)
|
|
else:
|
|
return Dimension(self._value + other.value)
|
|
|
|
def __radd__(self, other):
|
|
"""Returns the sum of `other` and `self`.
|
|
|
|
Args:
|
|
other: Another Dimension, or a value accepted by `as_dimension`.
|
|
|
|
Returns:
|
|
A Dimension whose value is the sum of `self` and `other`.
|
|
"""
|
|
return self + other
|
|
|
|
def __sub__(self, other):
|
|
"""Returns the subtraction of `other` from `self`.
|
|
|
|
Dimensions are subtracted as follows:
|
|
|
|
```python
|
|
tf.compat.v1.Dimension(m) - tf.compat.v1.Dimension(n) ==
|
|
tf.compat.v1.Dimension(m - n)
|
|
tf.compat.v1.Dimension(m) - tf.compat.v1.Dimension(None) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
tf.compat.v1.Dimension(None) - tf.compat.v1.Dimension(n) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
tf.compat.v1.Dimension(None) - tf.compat.v1.Dimension(None) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
```
|
|
|
|
Args:
|
|
other: Another Dimension, or a value accepted by `as_dimension`.
|
|
|
|
Returns:
|
|
A Dimension whose value is the subtraction of `other` from `self`.
|
|
"""
|
|
try:
|
|
other = as_dimension(other)
|
|
except (TypeError, ValueError):
|
|
return NotImplemented
|
|
if self._value is None or other.value is None:
|
|
return Dimension(None)
|
|
else:
|
|
return Dimension(self._value - other.value)
|
|
|
|
def __rsub__(self, other):
|
|
"""Returns the subtraction of `self` from `other`.
|
|
|
|
Args:
|
|
other: Another Dimension, or a value accepted by `as_dimension`.
|
|
|
|
Returns:
|
|
A Dimension whose value is the subtraction of `self` from `other`.
|
|
"""
|
|
other = as_dimension(other)
|
|
if self._value is None or other.value is None:
|
|
return Dimension(None)
|
|
else:
|
|
return Dimension(other.value - self._value)
|
|
|
|
def __mul__(self, other):
|
|
"""Returns the product of `self` and `other`.
|
|
|
|
Dimensions are summed as follows:
|
|
|
|
```python
|
|
tf.compat.v1.Dimension(m) * tf.compat.v1.Dimension(n) ==
|
|
tf.compat.v1.Dimension(m * n)
|
|
tf.compat.v1.Dimension(m) * tf.compat.v1.Dimension(None) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
tf.compat.v1.Dimension(None) * tf.compat.v1.Dimension(n) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
tf.compat.v1.Dimension(None) * tf.compat.v1.Dimension(None) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
```
|
|
|
|
Args:
|
|
other: Another Dimension, or a value accepted by `as_dimension`.
|
|
|
|
Returns:
|
|
A Dimension whose value is the product of `self` and `other`.
|
|
"""
|
|
try:
|
|
other = as_dimension(other)
|
|
except (TypeError, ValueError):
|
|
return NotImplemented
|
|
|
|
if self._value is None or other.value is None:
|
|
return Dimension(None)
|
|
else:
|
|
return Dimension(self._value * other.value)
|
|
|
|
def __rmul__(self, other):
|
|
"""Returns the product of `self` and `other`.
|
|
|
|
Args:
|
|
other: Another Dimension, or a value accepted by `as_dimension`.
|
|
|
|
Returns:
|
|
A Dimension whose value is the product of `self` and `other`.
|
|
"""
|
|
return self * other
|
|
|
|
def __floordiv__(self, other):
|
|
"""Returns the quotient of `self` and `other` rounded down.
|
|
|
|
Dimensions are divided as follows:
|
|
|
|
```python
|
|
tf.compat.v1.Dimension(m) // tf.compat.v1.Dimension(n) ==
|
|
tf.compat.v1.Dimension(m // n)
|
|
tf.compat.v1.Dimension(m) // tf.compat.v1.Dimension(None) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
tf.compat.v1.Dimension(None) // tf.compat.v1.Dimension(n) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
tf.compat.v1.Dimension(None) // tf.compat.v1.Dimension(None) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
```
|
|
|
|
Args:
|
|
other: Another Dimension, or a value accepted by `as_dimension`.
|
|
|
|
Returns:
|
|
A `Dimension` whose value is the integer quotient of `self` and `other`.
|
|
"""
|
|
try:
|
|
other = as_dimension(other)
|
|
except (TypeError, ValueError):
|
|
return NotImplemented
|
|
if self._value is None or other.value is None:
|
|
return Dimension(None)
|
|
else:
|
|
return Dimension(self._value // other.value)
|
|
|
|
def __rfloordiv__(self, other):
|
|
"""Returns the quotient of `other` and `self` rounded down.
|
|
|
|
Args:
|
|
other: Another Dimension, or a value accepted by `as_dimension`.
|
|
|
|
Returns:
|
|
A `Dimension` whose value is the integer quotient of `self` and `other`.
|
|
"""
|
|
other = as_dimension(other)
|
|
if self._value is None or other.value is None:
|
|
return Dimension(None)
|
|
else:
|
|
return Dimension(other.value // self._value)
|
|
|
|
def __div__(self, other):
|
|
"""DEPRECATED: Use `__floordiv__` via `x // y` instead.
|
|
|
|
This function exists only for backwards compatibility purposes; new code
|
|
should use `__floordiv__` via the syntax `x // y`. Using `x // y`
|
|
communicates clearly that the result rounds down, and is forward compatible
|
|
to Python 3.
|
|
|
|
Args:
|
|
other: Another `Dimension`.
|
|
|
|
Returns:
|
|
A `Dimension` whose value is the integer quotient of `self` and `other`.
|
|
"""
|
|
return self // other
|
|
|
|
def __rdiv__(self, other):
|
|
"""Use `__floordiv__` via `x // y` instead.
|
|
|
|
This function exists only to have a better error message. Instead of:
|
|
`TypeError: unsupported operand type(s) for /: 'int' and 'Dimension'`,
|
|
this function will explicitly call for usage of `//` instead.
|
|
|
|
Args:
|
|
other: Another `Dimension`.
|
|
|
|
Raises:
|
|
TypeError.
|
|
"""
|
|
raise TypeError("unsupported operand type(s) for /: '{}' and 'Dimension', "
|
|
"please use // instead".format(type(other).__name__))
|
|
|
|
def __truediv__(self, other):
|
|
"""Use `__floordiv__` via `x // y` instead.
|
|
|
|
This function exists only to have a better error message. Instead of:
|
|
`TypeError: unsupported operand type(s) for /: 'Dimension' and 'int'`,
|
|
this function will explicitly call for usage of `//` instead.
|
|
|
|
Args:
|
|
other: Another `Dimension`.
|
|
|
|
Raises:
|
|
TypeError.
|
|
"""
|
|
raise TypeError("unsupported operand type(s) for /: 'Dimension' and '{}', "
|
|
"please use // instead".format(type(other).__name__))
|
|
|
|
def __rtruediv__(self, other):
|
|
"""Use `__floordiv__` via `x // y` instead.
|
|
|
|
This function exists only to have a better error message. Instead of:
|
|
`TypeError: unsupported operand type(s) for /: 'int' and 'Dimension'`,
|
|
this function will explicitly call for usage of `//` instead.
|
|
|
|
Args:
|
|
other: Another `Dimension`.
|
|
|
|
Raises:
|
|
TypeError.
|
|
"""
|
|
raise TypeError("unsupported operand type(s) for /: '{}' and 'Dimension', "
|
|
"please use // instead".format(type(other).__name__))
|
|
|
|
def __mod__(self, other):
|
|
"""Returns `self` modulo `other`.
|
|
|
|
Dimension modulo are computed as follows:
|
|
|
|
```python
|
|
tf.compat.v1.Dimension(m) % tf.compat.v1.Dimension(n) ==
|
|
tf.compat.v1.Dimension(m % n)
|
|
tf.compat.v1.Dimension(m) % tf.compat.v1.Dimension(None) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
tf.compat.v1.Dimension(None) % tf.compat.v1.Dimension(n) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
tf.compat.v1.Dimension(None) % tf.compat.v1.Dimension(None) # equiv. to
|
|
tf.compat.v1.Dimension(None)
|
|
```
|
|
|
|
Args:
|
|
other: Another Dimension, or a value accepted by `as_dimension`.
|
|
|
|
Returns:
|
|
A Dimension whose value is `self` modulo `other`.
|
|
"""
|
|
other = as_dimension(other)
|
|
if self._value is None or other.value is None:
|
|
return Dimension(None)
|
|
else:
|
|
return Dimension(self._value % other.value)
|
|
|
|
def __rmod__(self, other):
|
|
"""Returns `other` modulo `self`.
|
|
|
|
Args:
|
|
other: Another Dimension, or a value accepted by `as_dimension`.
|
|
|
|
Returns:
|
|
A Dimension whose value is `other` modulo `self`.
|
|
"""
|
|
other = as_dimension(other)
|
|
return other % self
|
|
|
|
def __lt__(self, other):
|
|
"""Returns True if `self` is known to be less than `other`.
|
|
|
|
Dimensions are compared as follows:
|
|
|
|
```python
|
|
(tf.compat.v1.Dimension(m) < tf.compat.v1.Dimension(n)) == (m < n)
|
|
(tf.compat.v1.Dimension(m) < tf.compat.v1.Dimension(None)) == None
|
|
(tf.compat.v1.Dimension(None) < tf.compat.v1.Dimension(n)) == None
|
|
(tf.compat.v1.Dimension(None) < tf.compat.v1.Dimension(None)) == None
|
|
```
|
|
|
|
Args:
|
|
other: Another Dimension.
|
|
|
|
Returns:
|
|
The value of `self.value < other.value` if both are known, otherwise
|
|
None.
|
|
"""
|
|
other = as_dimension(other)
|
|
if self._value is None or other.value is None:
|
|
return None
|
|
else:
|
|
return self._value < other.value
|
|
|
|
def __le__(self, other):
|
|
"""Returns True if `self` is known to be less than or equal to `other`.
|
|
|
|
Dimensions are compared as follows:
|
|
|
|
```python
|
|
(tf.compat.v1.Dimension(m) <= tf.compat.v1.Dimension(n)) == (m <= n)
|
|
(tf.compat.v1.Dimension(m) <= tf.compat.v1.Dimension(None)) == None
|
|
(tf.compat.v1.Dimension(None) <= tf.compat.v1.Dimension(n)) == None
|
|
(tf.compat.v1.Dimension(None) <= tf.compat.v1.Dimension(None)) == None
|
|
```
|
|
|
|
Args:
|
|
other: Another Dimension.
|
|
|
|
Returns:
|
|
The value of `self.value <= other.value` if both are known, otherwise
|
|
None.
|
|
"""
|
|
other = as_dimension(other)
|
|
if self._value is None or other.value is None:
|
|
return None
|
|
else:
|
|
return self._value <= other.value
|
|
|
|
def __gt__(self, other):
|
|
"""Returns True if `self` is known to be greater than `other`.
|
|
|
|
Dimensions are compared as follows:
|
|
|
|
```python
|
|
(tf.compat.v1.Dimension(m) > tf.compat.v1.Dimension(n)) == (m > n)
|
|
(tf.compat.v1.Dimension(m) > tf.compat.v1.Dimension(None)) == None
|
|
(tf.compat.v1.Dimension(None) > tf.compat.v1.Dimension(n)) == None
|
|
(tf.compat.v1.Dimension(None) > tf.compat.v1.Dimension(None)) == None
|
|
```
|
|
|
|
Args:
|
|
other: Another Dimension.
|
|
|
|
Returns:
|
|
The value of `self.value > other.value` if both are known, otherwise
|
|
None.
|
|
"""
|
|
other = as_dimension(other)
|
|
if self._value is None or other.value is None:
|
|
return None
|
|
else:
|
|
return self._value > other.value
|
|
|
|
def __ge__(self, other):
|
|
"""Returns True if `self` is known to be greater than or equal to `other`.
|
|
|
|
Dimensions are compared as follows:
|
|
|
|
```python
|
|
(tf.compat.v1.Dimension(m) >= tf.compat.v1.Dimension(n)) == (m >= n)
|
|
(tf.compat.v1.Dimension(m) >= tf.compat.v1.Dimension(None)) == None
|
|
(tf.compat.v1.Dimension(None) >= tf.compat.v1.Dimension(n)) == None
|
|
(tf.compat.v1.Dimension(None) >= tf.compat.v1.Dimension(None)) == None
|
|
```
|
|
|
|
Args:
|
|
other: Another Dimension.
|
|
|
|
Returns:
|
|
The value of `self.value >= other.value` if both are known, otherwise
|
|
None.
|
|
"""
|
|
other = as_dimension(other)
|
|
if self._value is None or other.value is None:
|
|
return None
|
|
else:
|
|
return self._value >= other.value
|
|
|
|
def __reduce__(self):
|
|
return Dimension, (self._value,)
|
|
|
|
|
|
def as_dimension(value):
|
|
"""Converts the given value to a Dimension.
|
|
|
|
A Dimension input will be returned unmodified.
|
|
An input of `None` will be converted to an unknown Dimension.
|
|
An integer input will be converted to a Dimension with that value.
|
|
|
|
Args:
|
|
value: The value to be converted.
|
|
|
|
Returns:
|
|
A Dimension corresponding to the given value.
|
|
"""
|
|
if isinstance(value, Dimension):
|
|
return value
|
|
else:
|
|
return Dimension(value)
|
|
|
|
|
|
@tf_export("TensorShape")
|
|
class TensorShape(object):
|
|
"""Represents the shape of a `Tensor`.
|
|
|
|
A `TensorShape` represents a possibly-partial shape specification for a
|
|
`Tensor`. It may be one of the following:
|
|
|
|
* *Fully-known shape:* has a known number of dimensions and a known size
|
|
for each dimension. e.g. `TensorShape([16, 256])`
|
|
* *Partially-known shape:* has a known number of dimensions, and an unknown
|
|
size for one or more dimension. e.g. `TensorShape([None, 256])`
|
|
* *Unknown shape:* has an unknown number of dimensions, and an unknown
|
|
size in all dimensions. e.g. `TensorShape(None)`
|
|
|
|
If a tensor is produced by an operation of type `"Foo"`, its shape
|
|
may be inferred if there is a registered shape function for
|
|
`"Foo"`. See [Shape
|
|
functions](https://tensorflow.org/extend/adding_an_op#shape_functions_in_c)
|
|
for details of shape functions and how to register them. Alternatively,
|
|
the shape may be set explicitly using `tf.Tensor.set_shape`.
|
|
"""
|
|
__slots__ = ["_dims"]
|
|
|
|
def __init__(self, dims):
|
|
"""Creates a new TensorShape with the given dimensions.
|
|
|
|
Args:
|
|
dims: A list of Dimensions, or None if the shape is unspecified.
|
|
|
|
Raises:
|
|
TypeError: If dims cannot be converted to a list of dimensions.
|
|
"""
|
|
if isinstance(dims, (tuple, list)): # Most common case.
|
|
self._dims = [Dimension(d) for d in dims]
|
|
elif dims is None:
|
|
self._dims = None
|
|
elif isinstance(dims, tensor_shape_pb2.TensorShapeProto):
|
|
if dims.unknown_rank:
|
|
self._dims = None
|
|
else:
|
|
self._dims = [
|
|
# Protos store variable-size dimensions as -1
|
|
as_dimension(dim.size if dim.size != -1 else None)
|
|
for dim in dims.dim
|
|
]
|
|
elif isinstance(dims, TensorShape):
|
|
self._dims = dims.dims
|
|
else:
|
|
try:
|
|
dims_iter = iter(dims)
|
|
except TypeError:
|
|
# Treat as a singleton dimension
|
|
self._dims = [as_dimension(dims)]
|
|
else:
|
|
self._dims = []
|
|
for d in dims_iter:
|
|
try:
|
|
self._dims.append(as_dimension(d))
|
|
except TypeError as e:
|
|
six.raise_from(
|
|
TypeError(
|
|
"Failed to convert '{0!r}' to a shape: '{1!r}'"
|
|
"could not be converted to a dimension. A shape should "
|
|
"either be single dimension (e.g. 10), or an iterable of "
|
|
"dimensions (e.g. [1, 10, None])."
|
|
.format(dims, d)), e)
|
|
|
|
@property
|
|
def _v2_behavior(self):
|
|
if _TENSORSHAPE_V2_OVERRIDE is None:
|
|
return tf2.enabled()
|
|
return _TENSORSHAPE_V2_OVERRIDE
|
|
|
|
def __repr__(self):
|
|
if self._v2_behavior:
|
|
if self._dims is not None:
|
|
return "TensorShape(%r)" % [dim.value for dim in self._dims]
|
|
else:
|
|
return "TensorShape(None)"
|
|
else:
|
|
return "TensorShape(%r)" % self._dims
|
|
|
|
def __str__(self):
|
|
if self.rank is None:
|
|
return "<unknown>"
|
|
elif self.rank == 1:
|
|
if self._v2_behavior:
|
|
return "(%s,)" % self._dims[0].value
|
|
else:
|
|
return "(%s,)" % self._dims[0]
|
|
else:
|
|
if self._v2_behavior:
|
|
return "(%s)" % ", ".join(str(d.value) for d in self._dims)
|
|
else:
|
|
return "(%s)" % ", ".join(str(d) for d in self._dims)
|
|
|
|
@property
|
|
def rank(self):
|
|
"""Returns the rank of this shape, or None if it is unspecified."""
|
|
if self._dims is not None:
|
|
return len(self._dims)
|
|
return None
|
|
|
|
@property
|
|
def dims(self):
|
|
"""Deprecated. Returns list of dimensions for this shape.
|
|
|
|
Suggest `TensorShape.as_list` instead.
|
|
|
|
Returns:
|
|
A list containing `tf.compat.v1.Dimension`s, or None if the shape is
|
|
unspecified.
|
|
"""
|
|
return self._dims
|
|
|
|
@property
|
|
def ndims(self):
|
|
"""Deprecated accessor for `rank`."""
|
|
return self.rank
|
|
|
|
def __len__(self):
|
|
"""Returns the rank of this shape, or raises ValueError if unspecified."""
|
|
if self._dims is None:
|
|
raise ValueError("Cannot take the length of shape with unknown rank.")
|
|
return len(self._dims)
|
|
|
|
def __bool__(self):
|
|
"""Returns True if this shape contains non-zero information."""
|
|
return self._dims is not None
|
|
|
|
# Python 3 wants __bool__, Python 2.7 wants __nonzero__
|
|
__nonzero__ = __bool__
|
|
|
|
def __iter__(self):
|
|
"""Returns `self.dims` if the rank is known, otherwise raises ValueError."""
|
|
if self._dims is None:
|
|
raise ValueError("Cannot iterate over a shape with unknown rank.")
|
|
else:
|
|
if self._v2_behavior:
|
|
return iter(d.value for d in self._dims)
|
|
else:
|
|
return iter(d for d in self._dims)
|
|
|
|
def __getitem__(self, key):
|
|
"""Returns the value of a dimension or a shape, depending on the key.
|
|
|
|
Args:
|
|
key: If `key` is an integer, returns the dimension at that index;
|
|
otherwise if `key` is a slice, returns a TensorShape whose dimensions
|
|
are those selected by the slice from `self`.
|
|
|
|
Returns:
|
|
An integer if `key` is an integer, or a `TensorShape` if `key` is a
|
|
slice.
|
|
|
|
Raises:
|
|
ValueError: If `key` is a slice and `self` is completely unknown and
|
|
the step is set.
|
|
"""
|
|
if self._dims is not None:
|
|
if isinstance(key, slice):
|
|
return TensorShape(self._dims[key])
|
|
else:
|
|
if self._v2_behavior:
|
|
return self._dims[key].value
|
|
else:
|
|
return self._dims[key]
|
|
else:
|
|
if isinstance(key, slice):
|
|
start = key.start if key.start is not None else 0
|
|
stop = key.stop
|
|
|
|
if key.step is not None:
|
|
# TODO(mrry): Handle these maybe.
|
|
raise ValueError("Steps are not yet handled")
|
|
if stop is None:
|
|
# NOTE(mrry): This implies that TensorShape(None) is compatible with
|
|
# TensorShape(None)[1:], which is obviously not true. It would be
|
|
# possible to track the number of dimensions symbolically,
|
|
# and perhaps we should do that.
|
|
return unknown_shape()
|
|
elif start < 0 or stop < 0:
|
|
# TODO(mrry): Handle this better, as it will be useful for handling
|
|
# suffixes of otherwise unknown shapes.
|
|
return unknown_shape()
|
|
else:
|
|
return unknown_shape(rank=stop - start)
|
|
else:
|
|
if self._v2_behavior:
|
|
return None
|
|
else:
|
|
return Dimension(None)
|
|
|
|
def num_elements(self):
|
|
"""Returns the total number of elements, or none for incomplete shapes."""
|
|
if self.is_fully_defined():
|
|
return functools.reduce(operator.mul, self.as_list(), 1)
|
|
else:
|
|
return None
|
|
|
|
def merge_with(self, other):
|
|
"""Returns a `TensorShape` combining the information in `self` and `other`.
|
|
|
|
The dimensions in `self` and `other` are merged element-wise,
|
|
according to the rules below:
|
|
|
|
```python
|
|
Dimension(n).merge_with(Dimension(None)) == Dimension(n)
|
|
Dimension(None).merge_with(Dimension(n)) == Dimension(n)
|
|
Dimension(None).merge_with(Dimension(None)) == Dimension(None)
|
|
# raises ValueError for n != m
|
|
Dimension(n).merge_with(Dimension(m))
|
|
```
|
|
>> ts = tf.TensorShape([1,2])
|
|
>> ot1 = tf.TensorShape([1,2])
|
|
>> ts.merge_with(ot).as_list()
|
|
[1,2]
|
|
|
|
>> ot2 = tf.TensorShape([1,None])
|
|
>> ts.merge_with(ot2).as_list()
|
|
[1,2]
|
|
|
|
>> ot3 = tf.TensorShape([None, None])
|
|
>> ot3.merge_with(ot2).as_list()
|
|
[1, None]
|
|
|
|
Args:
|
|
other: Another `TensorShape`.
|
|
|
|
Returns:
|
|
A `TensorShape` containing the combined information of `self` and
|
|
`other`.
|
|
|
|
Raises:
|
|
ValueError: If `self` and `other` are not compatible.
|
|
"""
|
|
other = as_shape(other)
|
|
if self._dims is None:
|
|
return other
|
|
if other.dims is None:
|
|
return self
|
|
else:
|
|
try:
|
|
self.assert_same_rank(other)
|
|
new_dims = [
|
|
dim.merge_with(other_dim)
|
|
for dim, other_dim in zip(self._dims, other.dims)
|
|
]
|
|
return TensorShape(new_dims)
|
|
except ValueError:
|
|
raise ValueError("Shapes %s and %s are not compatible" % (self, other))
|
|
|
|
def __add__(self, other):
|
|
return self.concatenate(other)
|
|
|
|
def __radd__(self, other):
|
|
if not isinstance(other, TensorShape):
|
|
other = TensorShape(other)
|
|
return other.concatenate(self)
|
|
|
|
def concatenate(self, other):
|
|
"""Returns the concatenation of the dimension in `self` and `other`.
|
|
|
|
*N.B.* If either `self` or `other` is completely unknown,
|
|
concatenation will discard information about the other shape. In
|
|
future, we might support concatenation that preserves this
|
|
information for use with slicing.
|
|
|
|
Args:
|
|
other: Another `TensorShape`.
|
|
|
|
Returns:
|
|
A `TensorShape` whose dimensions are the concatenation of the
|
|
dimensions in `self` and `other`.
|
|
"""
|
|
# TODO(mrry): Handle the case where we concatenate a known shape with a
|
|
# completely unknown shape, so that we can use the partial information.
|
|
other = as_shape(other)
|
|
if self._dims is None or other.dims is None:
|
|
return unknown_shape()
|
|
else:
|
|
return TensorShape(self._dims + other.dims)
|
|
|
|
def assert_same_rank(self, other):
|
|
"""Raises an exception if `self` and `other` do not have compatible ranks.
|
|
|
|
Args:
|
|
other: Another `TensorShape`.
|
|
|
|
Raises:
|
|
ValueError: If `self` and `other` do not represent shapes with the
|
|
same rank.
|
|
"""
|
|
other = as_shape(other)
|
|
if self.rank is not None and other.rank is not None:
|
|
if self.rank != other.rank:
|
|
raise ValueError("Shapes %s and %s must have the same rank" %
|
|
(self, other))
|
|
|
|
def assert_has_rank(self, rank):
|
|
"""Raises an exception if `self` is not compatible with the given `rank`.
|
|
|
|
Args:
|
|
rank: An integer.
|
|
|
|
Raises:
|
|
ValueError: If `self` does not represent a shape with the given `rank`.
|
|
"""
|
|
if self.rank not in (None, rank):
|
|
raise ValueError("Shape %s must have rank %d" % (self, rank))
|
|
|
|
def with_rank(self, rank):
|
|
"""Returns a shape based on `self` with the given rank.
|
|
|
|
This method promotes a completely unknown shape to one with a
|
|
known rank.
|
|
|
|
Args:
|
|
rank: An integer.
|
|
|
|
Returns:
|
|
A shape that is at least as specific as `self` with the given rank.
|
|
|
|
Raises:
|
|
ValueError: If `self` does not represent a shape with the given `rank`.
|
|
"""
|
|
try:
|
|
return self.merge_with(unknown_shape(rank=rank))
|
|
except ValueError:
|
|
raise ValueError("Shape %s must have rank %d" % (self, rank))
|
|
|
|
def with_rank_at_least(self, rank):
|
|
"""Returns a shape based on `self` with at least the given rank.
|
|
|
|
Args:
|
|
rank: An integer.
|
|
|
|
Returns:
|
|
A shape that is at least as specific as `self` with at least the given
|
|
rank.
|
|
|
|
Raises:
|
|
ValueError: If `self` does not represent a shape with at least the given
|
|
`rank`.
|
|
"""
|
|
if self.rank is not None and self.rank < rank:
|
|
raise ValueError("Shape %s must have rank at least %d" % (self, rank))
|
|
else:
|
|
return self
|
|
|
|
def with_rank_at_most(self, rank):
|
|
"""Returns a shape based on `self` with at most the given rank.
|
|
|
|
Args:
|
|
rank: An integer.
|
|
|
|
Returns:
|
|
A shape that is at least as specific as `self` with at most the given
|
|
rank.
|
|
|
|
Raises:
|
|
ValueError: If `self` does not represent a shape with at most the given
|
|
`rank`.
|
|
"""
|
|
if self.rank is not None and self.rank > rank:
|
|
raise ValueError("Shape %s must have rank at most %d" % (self, rank))
|
|
else:
|
|
return self
|
|
|
|
def is_compatible_with(self, other):
|
|
"""Returns True iff `self` is compatible with `other`.
|
|
|
|
Two possibly-partially-defined shapes are compatible if there
|
|
exists a fully-defined shape that both shapes can represent. Thus,
|
|
compatibility allows the shape inference code to reason about
|
|
partially-defined shapes. For example:
|
|
|
|
* TensorShape(None) is compatible with all shapes.
|
|
|
|
* TensorShape([None, None]) is compatible with all two-dimensional
|
|
shapes, such as TensorShape([32, 784]), and also TensorShape(None). It is
|
|
not compatible with, for example, TensorShape([None]) or
|
|
TensorShape([None, None, None]).
|
|
|
|
* TensorShape([32, None]) is compatible with all two-dimensional shapes
|
|
with size 32 in the 0th dimension, and also TensorShape([None, None])
|
|
and TensorShape(None). It is not compatible with, for example,
|
|
TensorShape([32]), TensorShape([32, None, 1]) or TensorShape([64, None]).
|
|
|
|
* TensorShape([32, 784]) is compatible with itself, and also
|
|
TensorShape([32, None]), TensorShape([None, 784]), TensorShape([None,
|
|
None]) and TensorShape(None). It is not compatible with, for example,
|
|
TensorShape([32, 1, 784]) or TensorShape([None]).
|
|
|
|
The compatibility relation is reflexive and symmetric, but not
|
|
transitive. For example, TensorShape([32, 784]) is compatible with
|
|
TensorShape(None), and TensorShape(None) is compatible with
|
|
TensorShape([4, 4]), but TensorShape([32, 784]) is not compatible with
|
|
TensorShape([4, 4]).
|
|
|
|
Args:
|
|
other: Another TensorShape.
|
|
|
|
Returns:
|
|
True iff `self` is compatible with `other`.
|
|
|
|
"""
|
|
other = as_shape(other)
|
|
if self._dims is not None and other.dims is not None:
|
|
if self.rank != other.rank:
|
|
return False
|
|
for x_dim, y_dim in zip(self._dims, other.dims):
|
|
if not x_dim.is_compatible_with(y_dim):
|
|
return False
|
|
return True
|
|
|
|
def assert_is_compatible_with(self, other):
|
|
"""Raises exception if `self` and `other` do not represent the same shape.
|
|
|
|
This method can be used to assert that there exists a shape that both
|
|
`self` and `other` represent.
|
|
|
|
Args:
|
|
other: Another TensorShape.
|
|
|
|
Raises:
|
|
ValueError: If `self` and `other` do not represent the same shape.
|
|
"""
|
|
if not self.is_compatible_with(other):
|
|
raise ValueError("Shapes %s and %s are incompatible" % (self, other))
|
|
|
|
def most_specific_compatible_shape(self, other):
|
|
"""Returns the most specific TensorShape compatible with `self` and `other`.
|
|
|
|
* TensorShape([None, 1]) is the most specific TensorShape compatible with
|
|
both TensorShape([2, 1]) and TensorShape([5, 1]). Note that
|
|
TensorShape(None) is also compatible with above mentioned TensorShapes.
|
|
|
|
* TensorShape([1, 2, 3]) is the most specific TensorShape compatible with
|
|
both TensorShape([1, 2, 3]) and TensorShape([1, 2, 3]). There are more
|
|
less specific TensorShapes compatible with above mentioned TensorShapes,
|
|
e.g. TensorShape([1, 2, None]), TensorShape(None).
|
|
|
|
Args:
|
|
other: Another `TensorShape`.
|
|
|
|
Returns:
|
|
A `TensorShape` which is the most specific compatible shape of `self`
|
|
and `other`.
|
|
"""
|
|
|
|
other = as_shape(other)
|
|
if self._dims is None or other.dims is None or self.rank != other.rank:
|
|
return unknown_shape()
|
|
|
|
dims = [
|
|
d1 if d1 is not None and d2 is not None and d1 == d2 else None
|
|
for d1, d2 in zip(self._dims, other.dims)
|
|
]
|
|
return TensorShape(dims)
|
|
|
|
def is_fully_defined(self):
|
|
"""Returns True iff `self` is fully defined in every dimension."""
|
|
return (self._dims is not None and
|
|
all(dim.value is not None for dim in self._dims))
|
|
|
|
def assert_is_fully_defined(self):
|
|
"""Raises an exception if `self` is not fully defined in every dimension.
|
|
|
|
Raises:
|
|
ValueError: If `self` does not have a known value for every dimension.
|
|
"""
|
|
if not self.is_fully_defined():
|
|
raise ValueError("Shape %s is not fully defined" % self)
|
|
|
|
def as_list(self):
|
|
"""Returns a list of integers or `None` for each dimension.
|
|
|
|
Returns:
|
|
A list of integers or `None` for each dimension.
|
|
|
|
Raises:
|
|
ValueError: If `self` is an unknown shape with an unknown rank.
|
|
"""
|
|
if self._dims is None:
|
|
raise ValueError("as_list() is not defined on an unknown TensorShape.")
|
|
return [dim.value for dim in self._dims]
|
|
|
|
def as_proto(self):
|
|
"""Returns this shape as a `TensorShapeProto`."""
|
|
if self._dims is None:
|
|
return tensor_shape_pb2.TensorShapeProto(unknown_rank=True)
|
|
else:
|
|
return tensor_shape_pb2.TensorShapeProto(dim=[
|
|
tensor_shape_pb2.TensorShapeProto.Dim(
|
|
size=-1 if d.value is None else d.value) for d in self._dims
|
|
])
|
|
|
|
def __eq__(self, other):
|
|
"""Returns True if `self` is equivalent to `other`.
|
|
|
|
It first tries to convert `other` to `TensorShape`. `TypeError` is thrown
|
|
when the conversion fails. Otherwise, it compares each element in the
|
|
TensorShape dimensions.
|
|
|
|
* Two *Fully known* shapes, return True iff each element is equal.
|
|
>>> t_a = tf.TensorShape([1,2])
|
|
>>> a = [1, 2]
|
|
>>> t_b = tf.TensorShape([1,2])
|
|
>>> t_c = tf.TensorShape([1,2,3])
|
|
>>> t_a.__eq__(a)
|
|
True
|
|
>>> t_a.__eq__(t_b)
|
|
True
|
|
>>> t_a.__eq__(t_c)
|
|
False
|
|
|
|
* Two *Partially-known* shapes, return False.
|
|
>>> p_a = tf.TensorShape([1,None])
|
|
>>> p_b = tf.TensorShape([2,None])
|
|
>>> p_a.__eq__(p_b)
|
|
False
|
|
>>> t_a.__eq__(p_a)
|
|
False
|
|
|
|
* Two *Unknown shape*, return True.
|
|
>>> unk_a = tf.TensorShape(None)
|
|
>>> unk_b = tf.TensorShape(None)
|
|
>>> unk_a.__eq__(unk_b)
|
|
True
|
|
>>> unk_a.__eq__(t_a)
|
|
False
|
|
|
|
Args:
|
|
other: A `TensorShape` or type that can be converted to `TensorShape`.
|
|
|
|
Returns:
|
|
True if the dimensions are all equal.
|
|
|
|
Raises:
|
|
TypeError if `other` can not be converted to `TensorShape`.
|
|
"""
|
|
|
|
try:
|
|
other = as_shape(other)
|
|
except TypeError:
|
|
return NotImplemented
|
|
return self._dims == other.dims
|
|
|
|
def __ne__(self, other):
|
|
"""Returns True if `self` is known to be different from `other`."""
|
|
try:
|
|
other = as_shape(other)
|
|
except TypeError:
|
|
return NotImplemented
|
|
if self.rank is None or other.rank is None:
|
|
raise ValueError("The inequality of unknown TensorShapes is undefined.")
|
|
if self.rank != other.rank:
|
|
return True
|
|
return self._dims != other.dims
|
|
|
|
def __reduce__(self):
|
|
return TensorShape, (self._dims,)
|
|
|
|
def __concat__(self, other):
|
|
return self.concatenate(other)
|
|
|
|
|
|
def as_shape(shape):
|
|
"""Converts the given object to a TensorShape."""
|
|
if isinstance(shape, TensorShape):
|
|
return shape
|
|
else:
|
|
return TensorShape(shape)
|
|
|
|
|
|
def unknown_shape(rank=None, **kwargs):
|
|
"""Returns an unknown TensorShape, optionally with a known rank.
|
|
|
|
Args:
|
|
rank: (Optional) If specified, the number of dimensions in the shape.
|
|
**kwargs: For backwards compatibility.
|
|
|
|
Returns:
|
|
An unknown TensorShape.
|
|
|
|
Raises:
|
|
TypeError: In case of invalid arguments.
|
|
"""
|
|
if rank is None and "ndims" in kwargs:
|
|
rank = kwargs.pop("ndims")
|
|
if kwargs:
|
|
raise TypeError("Unknown argument: %s" % kwargs)
|
|
if rank is None:
|
|
return TensorShape(None)
|
|
else:
|
|
return TensorShape([Dimension(None)] * rank)
|