Other optimizers which have only a single slot variable allow control through the 'name' constructor parameter, but the FtrlOptimizer has two variables. Because they both are created with the same 'name' parameter, one of them has name as a suffix, and the other has name + "_1" as a suffix. This change allows them to be specified in a more controllable way. Change: 152802478
177 lines
7.3 KiB
Python
177 lines
7.3 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Ftrl-proximal for TensorFlow."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.training import optimizer
|
|
from tensorflow.python.training import training_ops
|
|
|
|
|
|
class FtrlOptimizer(optimizer.Optimizer):
|
|
"""Optimizer that implements the FTRL algorithm.
|
|
|
|
See this [paper](
|
|
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf).
|
|
"""
|
|
|
|
def __init__(self,
|
|
learning_rate,
|
|
learning_rate_power=-0.5,
|
|
initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.0,
|
|
l2_regularization_strength=0.0,
|
|
use_locking=False,
|
|
name="Ftrl",
|
|
accum_name=None,
|
|
linear_name=None):
|
|
"""Construct a new FTRL optimizer.
|
|
|
|
Args:
|
|
learning_rate: A float value or a constant float `Tensor`.
|
|
learning_rate_power: A float value, must be less or equal to zero.
|
|
initial_accumulator_value: The starting value for accumulators.
|
|
Only positive values are allowed.
|
|
l1_regularization_strength: A float value, must be greater than or
|
|
equal to zero.
|
|
l2_regularization_strength: A float value, must be greater than or
|
|
equal to zero.
|
|
use_locking: If `True` use locks for update operations.
|
|
name: Optional name prefix for the operations created when applying
|
|
gradients. Defaults to "Ftrl".
|
|
accum_name: The suffix for the variable that keeps the gradient squared
|
|
accumulator. If not present, defaults to name.
|
|
linear_name: The suffix for the variable that keeps the linear gradient
|
|
accumulator. If not present, defaults to name + "_1".
|
|
|
|
Raises:
|
|
ValueError: If one of the arguments is invalid.
|
|
"""
|
|
super(FtrlOptimizer, self).__init__(use_locking, name)
|
|
|
|
if initial_accumulator_value <= 0.0:
|
|
raise ValueError("initial_accumulator_value %f needs to be positive" %
|
|
initial_accumulator_value)
|
|
if learning_rate_power > 0.0:
|
|
raise ValueError("learning_rate_power %f needs to be negative or zero" %
|
|
learning_rate_power)
|
|
if l1_regularization_strength < 0.0:
|
|
raise ValueError(
|
|
"l1_regularization_strength %f needs to be positive or zero" %
|
|
l1_regularization_strength)
|
|
if l2_regularization_strength < 0.0:
|
|
raise ValueError(
|
|
"l2_regularization_strength %f needs to be positive or zero" %
|
|
l2_regularization_strength)
|
|
|
|
self._learning_rate = learning_rate
|
|
self._learning_rate_power = learning_rate_power
|
|
self._initial_accumulator_value = initial_accumulator_value
|
|
self._l1_regularization_strength = l1_regularization_strength
|
|
self._l2_regularization_strength = l2_regularization_strength
|
|
self._learning_rate_tensor = None
|
|
self._learning_rate_power_tensor = None
|
|
self._l1_regularization_strength_tensor = None
|
|
self._l2_regularization_strength_tensor = None
|
|
self._accum_name = accum_name
|
|
self._linear_name = linear_name
|
|
|
|
def _create_slots(self, var_list):
|
|
# Create the "accum" and "linear" slots.
|
|
for v in var_list:
|
|
with ops.colocate_with(v):
|
|
val = constant_op.constant(
|
|
self._initial_accumulator_value, dtype=v.dtype, shape=v.get_shape())
|
|
self._get_or_make_slot(v, val, "accum", self._accum_name or self._name)
|
|
self._zeros_slot(v, "linear", self._linear_name or self._name)
|
|
|
|
def _prepare(self):
|
|
self._learning_rate_tensor = ops.convert_to_tensor(
|
|
self._learning_rate, name="learning_rate")
|
|
self._l1_regularization_strength_tensor = ops.convert_to_tensor(
|
|
self._l1_regularization_strength, name="l1_regularization_strength")
|
|
self._l2_regularization_strength_tensor = ops.convert_to_tensor(
|
|
self._l2_regularization_strength, name="l2_regularization_strength")
|
|
self._learning_rate_power_tensor = ops.convert_to_tensor(
|
|
self._learning_rate_power, name="learning_rate_power")
|
|
|
|
def _apply_dense(self, grad, var):
|
|
accum = self.get_slot(var, "accum")
|
|
linear = self.get_slot(var, "linear")
|
|
return training_ops.apply_ftrl(
|
|
var,
|
|
accum,
|
|
linear,
|
|
grad,
|
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._l2_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
|
|
use_locking=self._use_locking)
|
|
|
|
def _resource_apply_dense(self, grad, var):
|
|
accum = self.get_slot(var, "accum")
|
|
linear = self.get_slot(var, "linear")
|
|
return training_ops.resource_apply_ftrl(
|
|
var.handle,
|
|
accum.handle,
|
|
linear.handle,
|
|
grad,
|
|
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor,
|
|
grad.dtype.base_dtype),
|
|
math_ops.cast(self._l2_regularization_strength_tensor,
|
|
grad.dtype.base_dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, grad.dtype.base_dtype),
|
|
use_locking=self._use_locking)
|
|
|
|
def _apply_sparse(self, grad, var):
|
|
accum = self.get_slot(var, "accum")
|
|
linear = self.get_slot(var, "linear")
|
|
return training_ops.sparse_apply_ftrl(
|
|
var,
|
|
accum,
|
|
linear,
|
|
grad.values,
|
|
grad.indices,
|
|
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._l2_regularization_strength_tensor,
|
|
var.dtype.base_dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, var.dtype.base_dtype),
|
|
use_locking=self._use_locking)
|
|
|
|
def _resource_apply_sparse(self, grad, var, indices):
|
|
accum = self.get_slot(var, "accum")
|
|
linear = self.get_slot(var, "linear")
|
|
return training_ops.resource_sparse_apply_ftrl(
|
|
var.handle,
|
|
accum.handle,
|
|
linear.handle,
|
|
grad,
|
|
indices,
|
|
math_ops.cast(self._learning_rate_tensor, grad.dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype),
|
|
math_ops.cast(self._l2_regularization_strength_tensor, grad.dtype),
|
|
math_ops.cast(self._learning_rate_power_tensor, grad.dtype),
|
|
use_locking=self._use_locking)
|