759 lines
17 KiB
Plaintext
759 lines
17 KiB
Plaintext
// Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Revision History
|
|
// Version 0: Initial version.
|
|
// Version 1: Add subgraphs to schema.
|
|
// Version 2: Rename operators to conform to NN API.
|
|
// Version 3: Move buffer data from Model.Subgraph.Tensors to Model.Buffers.
|
|
|
|
namespace tflite;
|
|
|
|
// This corresponds to the version.
|
|
file_identifier "TFL3";
|
|
// File extension of any written files.
|
|
file_extension "tflite";
|
|
|
|
// IMPORTANT: All new members of tables, enums and unions must be added at the
|
|
// end to ensure backwards compatibility.
|
|
|
|
// The type of data stored in a tensor.
|
|
enum TensorType : byte {
|
|
FLOAT32 = 0,
|
|
FLOAT16 = 1,
|
|
INT32 = 2,
|
|
UINT8 = 3,
|
|
INT64 = 4,
|
|
STRING = 5,
|
|
BOOL = 6,
|
|
INT16 = 7,
|
|
COMPLEX64 = 8,
|
|
INT8 = 9,
|
|
}
|
|
|
|
// Custom quantization parameters for experimenting with new quantization
|
|
// techniques.
|
|
table CustomQuantization {
|
|
custom:[byte];
|
|
}
|
|
|
|
// Represents a specific quantization technique's parameters.
|
|
union QuantizationDetails {
|
|
CustomQuantization,
|
|
}
|
|
|
|
// Parameters for converting a quantized tensor back to float.
|
|
table QuantizationParameters {
|
|
// These four parameters are the asymmetric linear quantization parameters.
|
|
// Given a quantized value q, the corresponding float value f should be:
|
|
// f = scale * (q - zero_point)
|
|
// For other quantization types, the QuantizationDetails below is used.
|
|
min:[float]; // For importing back into tensorflow.
|
|
max:[float]; // For importing back into tensorflow.
|
|
scale:[float]; // For dequantizing the tensor's values.
|
|
zero_point:[long];
|
|
|
|
// If this is not none, the quantization parameters above are ignored and the
|
|
// value of the QuantizationDetails union below should be used.
|
|
details:QuantizationDetails;
|
|
}
|
|
|
|
table Tensor {
|
|
// The tensor shape. The meaning of each entry is operator-specific but
|
|
// builtin ops use: [batch size, height, width, number of channels] (That's
|
|
// Tensorflow's NHWC).
|
|
shape:[int];
|
|
type:TensorType;
|
|
// An index that refers to the buffers table at the root of the model. Or,
|
|
// if there is no data buffer associated (i.e. intermediate results), then
|
|
// this is 0 (which refers to an always existent empty buffer).
|
|
//
|
|
// The data_buffer itself is an opaque container, with the assumption that the
|
|
// target device is little-endian. In addition, all builtin operators assume
|
|
// the memory is ordered such that if `shape` is [4, 3, 2], then index
|
|
// [i, j, k] maps to data_buffer[i*3*2 + j*2 + k].
|
|
buffer:uint;
|
|
name:string; // For debugging and importing back into tensorflow.
|
|
quantization:QuantizationParameters; // Optional.
|
|
|
|
is_variable:bool = false;
|
|
}
|
|
|
|
// A list of builtin operators. Builtin operators are slightly faster than custom
|
|
// ones, but not by much. Moreover, while custom operators accept an opaque
|
|
// object containing configuration parameters, builtins have a predetermined
|
|
// set of acceptable options.
|
|
enum BuiltinOperator : byte {
|
|
ADD = 0,
|
|
AVERAGE_POOL_2D = 1,
|
|
CONCATENATION = 2,
|
|
CONV_2D = 3,
|
|
DEPTHWISE_CONV_2D = 4,
|
|
// DEPTH_TO_SPACE = 5,
|
|
DEQUANTIZE = 6,
|
|
EMBEDDING_LOOKUP = 7,
|
|
FLOOR = 8,
|
|
FULLY_CONNECTED = 9,
|
|
HASHTABLE_LOOKUP = 10,
|
|
L2_NORMALIZATION = 11,
|
|
L2_POOL_2D = 12,
|
|
LOCAL_RESPONSE_NORMALIZATION = 13,
|
|
LOGISTIC = 14,
|
|
LSH_PROJECTION = 15,
|
|
LSTM = 16,
|
|
MAX_POOL_2D = 17,
|
|
MUL = 18,
|
|
RELU = 19,
|
|
// NOTE(aselle): RELU_N1_TO_1 used to be called RELU1, but it was renamed
|
|
// since different model developers use RELU1 in different ways. Never
|
|
// create another op called RELU1.
|
|
RELU_N1_TO_1 = 20,
|
|
RELU6 = 21,
|
|
RESHAPE = 22,
|
|
RESIZE_BILINEAR = 23,
|
|
RNN = 24,
|
|
SOFTMAX = 25,
|
|
SPACE_TO_DEPTH = 26,
|
|
SVDF = 27,
|
|
TANH = 28,
|
|
// TODO(aselle): Consider rename to CONCATENATE_EMBEDDINGS
|
|
CONCAT_EMBEDDINGS = 29,
|
|
SKIP_GRAM = 30,
|
|
CALL = 31,
|
|
CUSTOM = 32,
|
|
EMBEDDING_LOOKUP_SPARSE = 33,
|
|
PAD = 34,
|
|
UNIDIRECTIONAL_SEQUENCE_RNN = 35,
|
|
GATHER = 36,
|
|
BATCH_TO_SPACE_ND = 37,
|
|
SPACE_TO_BATCH_ND = 38,
|
|
TRANSPOSE = 39,
|
|
MEAN = 40,
|
|
SUB = 41,
|
|
DIV = 42,
|
|
SQUEEZE = 43,
|
|
UNIDIRECTIONAL_SEQUENCE_LSTM = 44,
|
|
STRIDED_SLICE = 45,
|
|
BIDIRECTIONAL_SEQUENCE_RNN = 46,
|
|
EXP = 47,
|
|
TOPK_V2 = 48,
|
|
SPLIT = 49,
|
|
LOG_SOFTMAX = 50,
|
|
// DELEGATE is a special op type for the operations which are delegated to
|
|
// other backends.
|
|
// WARNING: Experimental interface, subject to change
|
|
DELEGATE = 51,
|
|
BIDIRECTIONAL_SEQUENCE_LSTM = 52,
|
|
CAST = 53,
|
|
PRELU = 54,
|
|
MAXIMUM = 55,
|
|
ARG_MAX = 56,
|
|
MINIMUM = 57,
|
|
LESS = 58,
|
|
NEG = 59,
|
|
PADV2 = 60,
|
|
GREATER = 61,
|
|
GREATER_EQUAL = 62,
|
|
LESS_EQUAL = 63,
|
|
SELECT = 64,
|
|
SLICE = 65,
|
|
SIN = 66,
|
|
TRANSPOSE_CONV = 67,
|
|
SPARSE_TO_DENSE = 68,
|
|
TILE = 69,
|
|
EXPAND_DIMS = 70,
|
|
EQUAL = 71,
|
|
NOT_EQUAL = 72,
|
|
LOG = 73,
|
|
SUM = 74,
|
|
SQRT = 75,
|
|
RSQRT = 76,
|
|
SHAPE = 77,
|
|
POW = 78,
|
|
ARG_MIN = 79,
|
|
FAKE_QUANT = 80,
|
|
REDUCE_PROD = 81,
|
|
REDUCE_MAX = 82,
|
|
PACK = 83,
|
|
LOGICAL_OR = 84,
|
|
ONE_HOT = 85,
|
|
LOGICAL_AND = 86,
|
|
LOGICAL_NOT = 87,
|
|
UNPACK = 88,
|
|
REDUCE_MIN = 89,
|
|
FLOOR_DIV = 90,
|
|
REDUCE_ANY = 91,
|
|
SQUARE = 92,
|
|
ZEROS_LIKE = 93,
|
|
FILL = 94,
|
|
FLOOR_MOD = 95,
|
|
RANGE = 96,
|
|
RESIZE_NEAREST_NEIGHBOR = 97,
|
|
}
|
|
|
|
// Options for the builtin operators.
|
|
union BuiltinOptions {
|
|
Conv2DOptions,
|
|
DepthwiseConv2DOptions,
|
|
ConcatEmbeddingsOptions,
|
|
LSHProjectionOptions,
|
|
Pool2DOptions,
|
|
SVDFOptions,
|
|
RNNOptions,
|
|
FullyConnectedOptions,
|
|
SoftmaxOptions,
|
|
ConcatenationOptions,
|
|
AddOptions,
|
|
L2NormOptions,
|
|
LocalResponseNormalizationOptions,
|
|
LSTMOptions,
|
|
ResizeBilinearOptions,
|
|
CallOptions,
|
|
ReshapeOptions,
|
|
SkipGramOptions,
|
|
SpaceToDepthOptions,
|
|
EmbeddingLookupSparseOptions,
|
|
MulOptions,
|
|
PadOptions,
|
|
GatherOptions,
|
|
BatchToSpaceNDOptions,
|
|
SpaceToBatchNDOptions,
|
|
TransposeOptions,
|
|
ReducerOptions,
|
|
SubOptions,
|
|
DivOptions,
|
|
SqueezeOptions,
|
|
SequenceRNNOptions,
|
|
StridedSliceOptions,
|
|
ExpOptions,
|
|
TopKV2Options,
|
|
SplitOptions,
|
|
LogSoftmaxOptions,
|
|
CastOptions,
|
|
DequantizeOptions,
|
|
MaximumMinimumOptions,
|
|
ArgMaxOptions,
|
|
LessOptions,
|
|
NegOptions,
|
|
PadV2Options,
|
|
GreaterOptions,
|
|
GreaterEqualOptions,
|
|
LessEqualOptions,
|
|
SelectOptions,
|
|
SliceOptions,
|
|
TransposeConvOptions,
|
|
SparseToDenseOptions,
|
|
TileOptions,
|
|
ExpandDimsOptions,
|
|
EqualOptions,
|
|
NotEqualOptions,
|
|
ShapeOptions,
|
|
PowOptions,
|
|
ArgMinOptions,
|
|
FakeQuantOptions,
|
|
PackOptions,
|
|
LogicalOrOptions,
|
|
OneHotOptions,
|
|
LogicalAndOptions,
|
|
LogicalNotOptions,
|
|
UnpackOptions,
|
|
FloorDivOptions,
|
|
SquareOptions,
|
|
ZerosLikeOptions,
|
|
FillOptions,
|
|
BidirectionalSequenceLSTMOptions,
|
|
BidirectionalSequenceRNNOptions,
|
|
UnidirectionalSequenceLSTMOptions,
|
|
FloorModOptions,
|
|
RangeOptions,
|
|
ResizeNearestNeighborOptions,
|
|
}
|
|
|
|
enum Padding : byte { SAME, VALID }
|
|
|
|
enum ActivationFunctionType : byte {
|
|
NONE = 0,
|
|
RELU = 1,
|
|
RELU_N1_TO_1 = 2,
|
|
RELU6 = 3,
|
|
TANH = 4,
|
|
SIGN_BIT = 5,
|
|
}
|
|
|
|
table Conv2DOptions {
|
|
padding:Padding;
|
|
stride_w:int;
|
|
stride_h:int;
|
|
fused_activation_function:ActivationFunctionType;
|
|
dilation_w_factor:int = 1;
|
|
dilation_h_factor:int = 1;
|
|
}
|
|
|
|
table Pool2DOptions {
|
|
padding:Padding;
|
|
stride_w:int;
|
|
stride_h:int;
|
|
filter_width:int;
|
|
filter_height:int;
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table DepthwiseConv2DOptions {
|
|
// Parameters for DepthwiseConv version 1 or above.
|
|
padding:Padding;
|
|
stride_w:int;
|
|
stride_h:int;
|
|
depth_multiplier:int;
|
|
fused_activation_function:ActivationFunctionType;
|
|
// Parameters for DepthwiseConv version 2 or above.
|
|
dilation_w_factor:int = 1;
|
|
dilation_h_factor:int = 1;
|
|
}
|
|
|
|
table ConcatEmbeddingsOptions {
|
|
num_channels:int;
|
|
num_columns_per_channel:[int];
|
|
embedding_dim_per_channel:[int]; // This could be inferred from parameters.
|
|
}
|
|
|
|
enum LSHProjectionType: byte {
|
|
UNKNOWN = 0,
|
|
SPARSE = 1,
|
|
DENSE = 2,
|
|
}
|
|
|
|
table LSHProjectionOptions {
|
|
type: LSHProjectionType;
|
|
}
|
|
|
|
table SVDFOptions {
|
|
rank:int;
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
// An implementation of TensorFlow RNNCell.
|
|
table RNNOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
// An implementation of TensorFlow dynamic_rnn with RNNCell.
|
|
table SequenceRNNOptions {
|
|
time_major:bool;
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
// An implementation of TensorFlow bidrectional_dynamic_rnn with RNNCell.
|
|
table BidirectionalSequenceRNNOptions {
|
|
time_major:bool;
|
|
fused_activation_function:ActivationFunctionType;
|
|
merge_outputs: bool;
|
|
}
|
|
|
|
enum FullyConnectedOptionsWeightsFormat: byte {
|
|
DEFAULT = 0,
|
|
SHUFFLED4x16INT8 = 1,
|
|
}
|
|
|
|
// An implementation of TensorFlow fully_connected (a.k.a Dense) layer.
|
|
table FullyConnectedOptions {
|
|
// Parameters for FullyConnected version 1 or above.
|
|
fused_activation_function:ActivationFunctionType;
|
|
|
|
// Parameters for FullyConnected version 2 or above.
|
|
weights_format:FullyConnectedOptionsWeightsFormat = DEFAULT;
|
|
}
|
|
|
|
table SoftmaxOptions {
|
|
beta: float;
|
|
}
|
|
|
|
// An implementation of TensorFlow concat.
|
|
table ConcatenationOptions {
|
|
axis:int;
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table AddOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table MulOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table L2NormOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table LocalResponseNormalizationOptions {
|
|
radius:int;
|
|
bias:float;
|
|
alpha:float;
|
|
beta:float;
|
|
}
|
|
|
|
enum LSTMKernelType : byte {
|
|
// Full LSTM kernel which supports peephole and projection.
|
|
FULL = 0,
|
|
// Basic LSTM kernels. Equivalent to TensorFlow BasicLSTMCell.
|
|
BASIC = 1,
|
|
}
|
|
|
|
// An implementation of TensorFlow LSTMCell and CoupledInputForgetGateLSTMCell
|
|
table LSTMOptions {
|
|
// Parameters for LSTM version 1 or above.
|
|
fused_activation_function:ActivationFunctionType;
|
|
cell_clip: float; // Optional, 0.0 means no clipping
|
|
proj_clip: float; // Optional, 0.0 means no clipping
|
|
|
|
// Parameters for LSTM version 2 or above.
|
|
// Basic kernel is only supported in version 2 or above.
|
|
kernel_type: LSTMKernelType = FULL;
|
|
}
|
|
|
|
// An implementation of TensorFlow dynamic_rnn with LSTMCell.
|
|
table UnidirectionalSequenceLSTMOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
cell_clip: float; // Optional, 0.0 means no clipping
|
|
proj_clip: float; // Optional, 0.0 means no clipping
|
|
|
|
// If true then first dimension is sequence, otherwise batch.
|
|
time_major:bool;
|
|
}
|
|
|
|
table BidirectionalSequenceLSTMOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
cell_clip: float; // Optional, 0.0 means no clipping
|
|
proj_clip: float; // Optional, 0.0 means no clipping
|
|
|
|
// If true, store the outputs of both directions into the first output.
|
|
merge_outputs: bool;
|
|
}
|
|
|
|
table ResizeBilinearOptions {
|
|
new_height: int (deprecated);
|
|
new_width: int (deprecated);
|
|
align_corners: bool;
|
|
}
|
|
|
|
table ResizeNearestNeighborOptions {
|
|
align_corners: bool;
|
|
}
|
|
|
|
// A call operation options
|
|
table CallOptions {
|
|
// The subgraph index that needs to be called.
|
|
subgraph:uint;
|
|
}
|
|
|
|
table PadOptions {
|
|
}
|
|
|
|
table PadV2Options {
|
|
}
|
|
|
|
table ReshapeOptions {
|
|
new_shape:[int];
|
|
}
|
|
|
|
table SpaceToBatchNDOptions {
|
|
}
|
|
|
|
table BatchToSpaceNDOptions {
|
|
}
|
|
|
|
table SkipGramOptions {
|
|
ngram_size: int;
|
|
max_skip_size: int;
|
|
include_all_ngrams: bool;
|
|
}
|
|
|
|
table SpaceToDepthOptions {
|
|
block_size: int;
|
|
}
|
|
|
|
table SubOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table DivOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table TopKV2Options {
|
|
}
|
|
|
|
enum CombinerType : byte {
|
|
SUM = 0,
|
|
MEAN = 1,
|
|
SQRTN = 2,
|
|
}
|
|
|
|
table EmbeddingLookupSparseOptions {
|
|
combiner:CombinerType;
|
|
}
|
|
|
|
table GatherOptions {
|
|
axis: int;
|
|
}
|
|
|
|
table TransposeOptions {
|
|
}
|
|
|
|
table ExpOptions {
|
|
}
|
|
|
|
table ReducerOptions {
|
|
keep_dims: bool;
|
|
}
|
|
|
|
table SqueezeOptions {
|
|
squeeze_dims:[int];
|
|
}
|
|
|
|
table SplitOptions {
|
|
num_splits: int;
|
|
}
|
|
|
|
table StridedSliceOptions {
|
|
begin_mask: int;
|
|
end_mask: int;
|
|
ellipsis_mask: int;
|
|
new_axis_mask: int;
|
|
shrink_axis_mask: int;
|
|
}
|
|
|
|
table LogSoftmaxOptions {
|
|
}
|
|
|
|
table CastOptions {
|
|
in_data_type: TensorType;
|
|
out_data_type: TensorType;
|
|
}
|
|
|
|
table DequantizeOptions {
|
|
}
|
|
|
|
table MaximumMinimumOptions {
|
|
}
|
|
|
|
table TileOptions {
|
|
}
|
|
|
|
table ArgMaxOptions {
|
|
output_type : TensorType;
|
|
}
|
|
|
|
table ArgMinOptions {
|
|
output_type : TensorType;
|
|
}
|
|
|
|
table GreaterOptions {
|
|
}
|
|
|
|
table GreaterEqualOptions {
|
|
}
|
|
|
|
table LessOptions {
|
|
}
|
|
|
|
table LessEqualOptions {
|
|
}
|
|
|
|
table NegOptions {
|
|
}
|
|
|
|
table SelectOptions {
|
|
}
|
|
|
|
table SliceOptions {
|
|
}
|
|
|
|
table TransposeConvOptions {
|
|
padding:Padding;
|
|
stride_w:int;
|
|
stride_h:int;
|
|
}
|
|
|
|
table ExpandDimsOptions {
|
|
}
|
|
|
|
table SparseToDenseOptions {
|
|
validate_indices:bool;
|
|
}
|
|
|
|
table EqualOptions {
|
|
}
|
|
|
|
table NotEqualOptions {
|
|
}
|
|
|
|
table ShapeOptions {
|
|
// Optional output type of the operation (int32 or int64). Defaults to int32.
|
|
out_type : TensorType;
|
|
}
|
|
|
|
table PowOptions {
|
|
}
|
|
|
|
table FakeQuantOptions {
|
|
// Parameters supported by version 1:
|
|
min:float;
|
|
max:float;
|
|
num_bits:int;
|
|
|
|
// Parameters supported by version 2:
|
|
narrow_range:bool;
|
|
}
|
|
|
|
table PackOptions {
|
|
values_count:int;
|
|
axis:int;
|
|
}
|
|
|
|
table LogicalOrOptions {
|
|
}
|
|
|
|
table OneHotOptions {
|
|
axis:int;
|
|
}
|
|
|
|
table LogicalAndOptions {
|
|
}
|
|
|
|
table LogicalNotOptions {
|
|
}
|
|
|
|
table UnpackOptions {
|
|
num:int;
|
|
axis:int;
|
|
}
|
|
|
|
table FloorDivOptions {
|
|
}
|
|
|
|
table SquareOptions {
|
|
}
|
|
|
|
table ZerosLikeOptions {
|
|
}
|
|
|
|
table FillOptions {
|
|
}
|
|
|
|
table FloorModOptions {
|
|
}
|
|
|
|
table RangeOptions {
|
|
}
|
|
|
|
// An OperatorCode can be an enum value (BuiltinOperator) if the operator is a
|
|
// builtin, or a string if the operator is custom.
|
|
table OperatorCode {
|
|
builtin_code:BuiltinOperator;
|
|
custom_code:string;
|
|
|
|
// The version of the operator. The version need to be bumped whenever new
|
|
// parameters are introduced into an op.
|
|
version:int = 1;
|
|
}
|
|
|
|
enum CustomOptionsFormat : byte {
|
|
FLEXBUFFERS = 0,
|
|
}
|
|
|
|
// An operator takes tensors as inputs and outputs. The type of operation being
|
|
// performed is determined by an index into the list of valid OperatorCodes,
|
|
// while the specifics of each operations is configured using builtin_options
|
|
// or custom_options.
|
|
table Operator {
|
|
// Index into the operator_codes array. Using an integer here avoids
|
|
// complicate map lookups.
|
|
opcode_index:uint;
|
|
|
|
// Optional input and output tensors are indicated by -1.
|
|
inputs:[int];
|
|
outputs:[int];
|
|
|
|
builtin_options:BuiltinOptions;
|
|
custom_options:[ubyte];
|
|
custom_options_format:CustomOptionsFormat;
|
|
|
|
// A list of booleans indicating the input tensors which are being mutated by
|
|
// this operator.(e.g. used by RNN and LSTM).
|
|
// For example, if the "inputs" array refers to 5 tensors and the second and
|
|
// fifth are mutable variables, then this list will contain
|
|
// [false, true, false, false, true].
|
|
//
|
|
// If the list is empty, no variable is mutated in this operator.
|
|
// The list either has the same length as `inputs`, or is empty.
|
|
mutating_variable_inputs:[bool];
|
|
}
|
|
|
|
// The root type, defining a subgraph, which typically represents an entire
|
|
// model.
|
|
table SubGraph {
|
|
// A list of all tensors used in this subgraph.
|
|
tensors:[Tensor];
|
|
|
|
// Indices of the tensors that are inputs into this subgraph. Note this is
|
|
// the list of non-static tensors that feed into the subgraph for inference.
|
|
inputs:[int];
|
|
|
|
// Indices of the tensors that are outputs out of this subgraph. Note this is
|
|
// the list of output tensors that are considered the product of the
|
|
// subgraph's inference.
|
|
outputs:[int];
|
|
|
|
// All operators, in execution order.
|
|
operators:[Operator];
|
|
|
|
// Name of this subgraph (used for debugging).
|
|
name:string;
|
|
}
|
|
|
|
// Table of raw data buffers (used for constant tensors). Referenced by tensors
|
|
// by index. The generous alignment accommodates mmap-friendly data structures.
|
|
table Buffer {
|
|
data:[ubyte] (force_align: 16);
|
|
}
|
|
|
|
table Model {
|
|
// Version of the schema.
|
|
version:uint;
|
|
|
|
// A list of all operator codes used in this model. This is
|
|
// kept in order because operators carry an index into this
|
|
// vector.
|
|
operator_codes:[OperatorCode];
|
|
|
|
// All the subgraphs of the model. The 0th is assumed to be the main
|
|
// model.
|
|
subgraphs:[SubGraph];
|
|
|
|
// A description of the model.
|
|
description:string;
|
|
|
|
// Buffers of the model.
|
|
// Note the 0th entry of this array must be an empty buffer (sentinel).
|
|
// This is a convention so that tensors without a buffer can provide 0 as
|
|
// their buffer.
|
|
buffers:[Buffer];
|
|
|
|
// Metadata about the model. Indirects into the existings buffers list.
|
|
metadata_buffer:[int];
|
|
}
|
|
|
|
root_type Model;
|