STT-tensorflow/tensorflow/tools/api/golden/v1/tensorflow.metrics.pbtxt
A. Unique TensorFlower d7ded17058 Add the ability to specify custom thresholds for AUC computation. As noted in the original documentation, the metric uses thresholds distributed uniformly over [0, 1] by default, which is not accurate in cases where predictions are not also distributed somewhat uniformly over that range.
Currently, if a client discovers that the lower and upper bound estimates of AUC are not accurate by using `summation_methods` 'minoring' and 'majoring', their only recourse is to increase `num_thresholds`. If predictions are peaked in a very narrow range, `num_thresholds` may need to be set very high in order to have any resolution, substantially increasing the size of the required local variables. The new optional `thresholds` parameter allows clients to manually specify the thresholds to use instead, which allows for higher metric resolution at equal variable cost.

PiperOrigin-RevId: 240459959
2019-03-26 17:14:51 -07:00

136 lines
8.9 KiB
Plaintext

path: "tensorflow.metrics"
tf_module {
member_method {
name: "accuracy"
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "auc"
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'num_thresholds\', \'metrics_collections\', \'updates_collections\', \'curve\', \'name\', \'summation_method\', \'thresholds\'], varargs=None, keywords=None, defaults=[\'None\', \'200\', \'None\', \'None\', \'ROC\', \'None\', \'trapezoidal\', \'None\'], "
}
member_method {
name: "average_precision_at_k"
argspec: "args=[\'labels\', \'predictions\', \'k\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "false_negatives"
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "false_negatives_at_thresholds"
argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "false_positives"
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "false_positives_at_thresholds"
argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "mean"
argspec: "args=[\'values\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "mean_absolute_error"
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "mean_cosine_distance"
argspec: "args=[\'labels\', \'predictions\', \'dim\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "mean_iou"
argspec: "args=[\'labels\', \'predictions\', \'num_classes\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "mean_per_class_accuracy"
argspec: "args=[\'labels\', \'predictions\', \'num_classes\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "mean_relative_error"
argspec: "args=[\'labels\', \'predictions\', \'normalizer\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "mean_squared_error"
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "mean_tensor"
argspec: "args=[\'values\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "percentage_below"
argspec: "args=[\'values\', \'threshold\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "precision"
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "precision_at_k"
argspec: "args=[\'labels\', \'predictions\', \'k\', \'class_id\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "precision_at_thresholds"
argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "precision_at_top_k"
argspec: "args=[\'labels\', \'predictions_idx\', \'k\', \'class_id\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "recall"
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "recall_at_k"
argspec: "args=[\'labels\', \'predictions\', \'k\', \'class_id\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "recall_at_thresholds"
argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "recall_at_top_k"
argspec: "args=[\'labels\', \'predictions_idx\', \'k\', \'class_id\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "root_mean_squared_error"
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "sensitivity_at_specificity"
argspec: "args=[\'labels\', \'predictions\', \'specificity\', \'weights\', \'num_thresholds\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'200\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "sparse_average_precision_at_k"
argspec: "args=[\'labels\', \'predictions\', \'k\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "sparse_precision_at_k"
argspec: "args=[\'labels\', \'predictions\', \'k\', \'class_id\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "specificity_at_sensitivity"
argspec: "args=[\'labels\', \'predictions\', \'sensitivity\', \'weights\', \'num_thresholds\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'200\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "true_negatives"
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "true_negatives_at_thresholds"
argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "true_positives"
argspec: "args=[\'labels\', \'predictions\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "true_positives_at_thresholds"
argspec: "args=[\'labels\', \'predictions\', \'thresholds\', \'weights\', \'metrics_collections\', \'updates_collections\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\'], "
}
}