STT-tensorflow/tensorflow/tools/api/golden/v1/tensorflow.layers.-input-spec.pbtxt
Katherine Wu eff4ae822a Keras models and layers saving and reviving code. Implements go/tf-model-serialization.
To save and revive a model:
1. Save the model using tf.saved_model.save
2. call load_from_save_model_v2

This restores various metadata about Keras models and layers, as well as their call and loss functions.

Changes to object serialization:
- Adds private fields for tracking object's identifier and metadata.
- Added _list_extra_dependencies_for_serialization, which allows objects to save extra
  dependencies when serialized to SavedModel.
- Object graph view maintains a serialization cache object that is passed to each object when serializing functions/extra dependencies.

PiperOrigin-RevId: 251386039
2019-06-04 00:34:24 -07:00

18 lines
663 B
Plaintext

path: "tensorflow.layers.InputSpec"
tf_class {
is_instance: "<class \'tensorflow.python.keras.engine.input_spec.InputSpec\'>"
is_instance: "<type \'object\'>"
member_method {
name: "__init__"
argspec: "args=[\'self\', \'dtype\', \'shape\', \'ndim\', \'max_ndim\', \'min_ndim\', \'axes\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}