Previously, some of our losses did not respect the rule "for every loss class with name XxxYyy, there is an equivalent loss function with name xxx_yyy". In particular: KLDivergence class -> kullback_leibler_divergence function (expected: kl_divergence) LogCosh class -> logcosh function (expected: log_cosh) Huber class -> corresponding function not exported (expected: huber) This change is backwards compatible (only adding aliases, and changing default names for LogCosh and KLDivergence, which is fine as we make no guarantees with regard to default names). PiperOrigin-RevId: 303812304 Change-Id: I2f62d594d99f3fa30fbf04bf92c0dd5caadc0958
192 lines
5.5 KiB
Plaintext
192 lines
5.5 KiB
Plaintext
path: "tensorflow.keras.losses"
|
|
tf_module {
|
|
member {
|
|
name: "BinaryCrossentropy"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "CategoricalCrossentropy"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "CategoricalHinge"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "CosineSimilarity"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "Hinge"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "Huber"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "KLDivergence"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "LogCosh"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "Loss"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "MeanAbsoluteError"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "MeanAbsolutePercentageError"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "MeanSquaredError"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "MeanSquaredLogarithmicError"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "Poisson"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "SparseCategoricalCrossentropy"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member {
|
|
name: "SquaredHinge"
|
|
mtype: "<type \'type\'>"
|
|
}
|
|
member_method {
|
|
name: "KLD"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "MAE"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "MAPE"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "MSE"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "MSLE"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "binary_crossentropy"
|
|
argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywords=None, defaults=[\'False\', \'0\'], "
|
|
}
|
|
member_method {
|
|
name: "categorical_crossentropy"
|
|
argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywords=None, defaults=[\'False\', \'0\'], "
|
|
}
|
|
member_method {
|
|
name: "categorical_hinge"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "cosine"
|
|
argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], "
|
|
}
|
|
member_method {
|
|
name: "cosine_proximity"
|
|
argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], "
|
|
}
|
|
member_method {
|
|
name: "cosine_similarity"
|
|
argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], "
|
|
}
|
|
member_method {
|
|
name: "deserialize"
|
|
argspec: "args=[\'name\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
|
}
|
|
member_method {
|
|
name: "get"
|
|
argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "hinge"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "kl_divergence"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "kld"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "kullback_leibler_divergence"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "log_cosh"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "logcosh"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "mae"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "mape"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "mean_absolute_error"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "mean_absolute_percentage_error"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "mean_squared_error"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "mean_squared_logarithmic_error"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "mse"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "msle"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "poisson"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "serialize"
|
|
argspec: "args=[\'loss\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
member_method {
|
|
name: "sparse_categorical_crossentropy"
|
|
argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\'], "
|
|
}
|
|
member_method {
|
|
name: "squared_hinge"
|
|
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
|
|
}
|
|
}
|