STT-tensorflow/tensorflow/tools/api/golden/v1/tensorflow.keras.losses.pbtxt
Francois Chollet c1065c4c79 Regularize loss naming quirks.
Previously, some of our losses did not respect the rule "for every loss class with name XxxYyy, there is an equivalent loss function with name xxx_yyy". In particular:

KLDivergence class -> kullback_leibler_divergence function (expected: kl_divergence)
LogCosh class -> logcosh function (expected: log_cosh)
Huber class -> corresponding function not exported (expected: huber)

This change is backwards compatible (only adding aliases, and changing default names for LogCosh and KLDivergence, which is fine as we make no guarantees with regard to default names).

PiperOrigin-RevId: 303812304
Change-Id: I2f62d594d99f3fa30fbf04bf92c0dd5caadc0958
2020-03-30 13:46:01 -07:00

192 lines
5.5 KiB
Plaintext

path: "tensorflow.keras.losses"
tf_module {
member {
name: "BinaryCrossentropy"
mtype: "<type \'type\'>"
}
member {
name: "CategoricalCrossentropy"
mtype: "<type \'type\'>"
}
member {
name: "CategoricalHinge"
mtype: "<type \'type\'>"
}
member {
name: "CosineSimilarity"
mtype: "<type \'type\'>"
}
member {
name: "Hinge"
mtype: "<type \'type\'>"
}
member {
name: "Huber"
mtype: "<type \'type\'>"
}
member {
name: "KLDivergence"
mtype: "<type \'type\'>"
}
member {
name: "LogCosh"
mtype: "<type \'type\'>"
}
member {
name: "Loss"
mtype: "<type \'type\'>"
}
member {
name: "MeanAbsoluteError"
mtype: "<type \'type\'>"
}
member {
name: "MeanAbsolutePercentageError"
mtype: "<type \'type\'>"
}
member {
name: "MeanSquaredError"
mtype: "<type \'type\'>"
}
member {
name: "MeanSquaredLogarithmicError"
mtype: "<type \'type\'>"
}
member {
name: "Poisson"
mtype: "<type \'type\'>"
}
member {
name: "SparseCategoricalCrossentropy"
mtype: "<type \'type\'>"
}
member {
name: "SquaredHinge"
mtype: "<type \'type\'>"
}
member_method {
name: "KLD"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "MAE"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "MAPE"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "MSE"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "MSLE"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "binary_crossentropy"
argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywords=None, defaults=[\'False\', \'0\'], "
}
member_method {
name: "categorical_crossentropy"
argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\'], varargs=None, keywords=None, defaults=[\'False\', \'0\'], "
}
member_method {
name: "categorical_hinge"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "cosine"
argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], "
}
member_method {
name: "cosine_proximity"
argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], "
}
member_method {
name: "cosine_similarity"
argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'], "
}
member_method {
name: "deserialize"
argspec: "args=[\'name\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "get"
argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "hinge"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "kl_divergence"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "kld"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "kullback_leibler_divergence"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "log_cosh"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "logcosh"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "mae"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "mape"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "mean_absolute_error"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "mean_absolute_percentage_error"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "mean_squared_error"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "mean_squared_logarithmic_error"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "mse"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "msle"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "poisson"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "serialize"
argspec: "args=[\'loss\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "sparse_categorical_crossentropy"
argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'axis\'], varargs=None, keywords=None, defaults=[\'False\', \'-1\'], "
}
member_method {
name: "squared_hinge"
argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
}
}