STT-tensorflow/tensorflow/python/data/ops/optional_ops.py
Jiri Simsa cfe037e3fe [tf.data] API changes.
This CL makes the following tf.data API-related changes:
1) `tf.data.Iterator` and `tf.data.IteratorSpec` are exposed in the v2 API
2) `tf.experimental.Optional` is exposed in the API (previously exposed as `tf.data.experimental.Optional`)
3) `tf.experimental.Optional.none_from_structure` and `tf.experimental.Optional.value_structure` is renamed to and `tf.experimental.Optional.empty` and `tf.experimental.Optional.element_spec` respectively
4) `tf.OptionalSpec.value_structure` is renamed to `tf.OptionalSpec.element_spec`
5) reflects these changes in documentation and code
6) adds testable docstring for newly exposed APIs

PiperOrigin-RevId: 316003328
Change-Id: I7b7e79942308b3d2f94b988c31729980fb69d961
2020-06-11 16:46:30 -07:00

263 lines
8.6 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A type for representing values that may or may not exist."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import six
from tensorflow.python.data.util import structure
from tensorflow.python.framework import composite_tensor
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_spec
from tensorflow.python.framework import type_spec
from tensorflow.python.ops import gen_dataset_ops
from tensorflow.python.util import deprecation
from tensorflow.python.util.tf_export import tf_export
@tf_export("experimental.Optional", "data.experimental.Optional")
@deprecation.deprecated_endpoints("data.experimental.Optional")
@six.add_metaclass(abc.ABCMeta)
class Optional(composite_tensor.CompositeTensor):
"""Represents a value that may or may not be present.
A `tf.experimental.Optional` can represent the result of an operation that may
fail as a value, rather than raising an exception and halting execution. For
example, `tf.data.Iterator.get_next_as_optional()` returns a
`tf.experimental.Optional` that either contains the next element of an
iterator if one exists, or an "empty" value that indicates the end of the
sequence has been reached.
`tf.experimental.Optional` can only be used with values that are convertible
to `tf.Tensor` or `tf.CompositeTensor`.
One can create a `tf.experimental.Optional` from a value using the
`from_value()` method:
>>> optional = tf.experimental.Optional.from_value(42)
>>> print(optional.has_value())
tf.Tensor(True, shape=(), dtype=bool)
>>> print(optional.get_value())
tf.Tensor(42, shape=(), dtype=int32)
or without a value using the `empty()` method:
>>> optional = tf.experimental.Optional.empty(
... tf.TensorSpec(shape=(), dtype=tf.int32, name=None))
>>> print(optional.has_value())
tf.Tensor(False, shape=(), dtype=bool)
"""
@abc.abstractmethod
def has_value(self, name=None):
"""Returns a tensor that evaluates to `True` if this optional has a value.
>>> optional = tf.experimental.Optional.from_value(42)
>>> print(optional.has_value())
tf.Tensor(True, shape=(), dtype=bool)
Args:
name: (Optional.) A name for the created operation.
Returns:
A scalar `tf.Tensor` of type `tf.bool`.
"""
raise NotImplementedError("Optional.has_value()")
@abc.abstractmethod
def get_value(self, name=None):
"""Returns the value wrapped by this optional.
If this optional does not have a value (i.e. `self.has_value()` evaluates to
`False`), this operation will raise `tf.errors.InvalidArgumentError` at
runtime.
>>> optional = tf.experimental.Optional.from_value(42)
>>> print(optional.get_value())
tf.Tensor(42, shape=(), dtype=int32)
Args:
name: (Optional.) A name for the created operation.
Returns:
The wrapped value.
"""
raise NotImplementedError("Optional.get_value()")
@abc.abstractproperty
def element_spec(self):
"""The type specification of an element of this optional.
>>> optional = tf.experimental.Optional.from_value(42)
>>> print(optional.element_spec)
tf.TensorSpec(shape=(), dtype=tf.int32, name=None)
Returns:
A nested structure of `tf.TypeSpec` objects matching the structure of an
element of this optional, specifying the type of individual components.
"""
raise NotImplementedError("Optional.element_spec")
@staticmethod
def empty(element_spec):
"""Returns an `Optional` that has no value.
NOTE: This method takes an argument that defines the structure of the value
that would be contained in the returned `Optional` if it had a value.
>>> optional = tf.experimental.Optional.empty(
... tf.TensorSpec(shape=(), dtype=tf.int32, name=None))
>>> print(optional.has_value())
tf.Tensor(False, shape=(), dtype=bool)
Args:
element_spec: A nested structure of `tf.TypeSpec` objects matching the
structure of an element of this optional.
Returns:
A `tf.experimental.Optional` with no value.
"""
return _OptionalImpl(gen_dataset_ops.optional_none(), element_spec)
@staticmethod
def from_value(value):
"""Returns a `tf.experimental.Optional` that wraps the given value.
>>> optional = tf.experimental.Optional.from_value(42)
>>> print(optional.has_value())
tf.Tensor(True, shape=(), dtype=bool)
>>> print(optional.get_value())
tf.Tensor(42, shape=(), dtype=int32)
Args:
value: A value to wrap. The value must be convertible to `tf.Tensor` or
`tf.CompositeTensor`.
Returns:
A `tf.experimental.Optional` that wraps `value`.
"""
with ops.name_scope("optional") as scope:
with ops.name_scope("value"):
element_spec = structure.type_spec_from_value(value)
encoded_value = structure.to_tensor_list(element_spec, value)
return _OptionalImpl(
gen_dataset_ops.optional_from_value(encoded_value, name=scope),
element_spec)
class _OptionalImpl(Optional):
"""Concrete implementation of `tf.experimental.Optional`.
NOTE(mrry): This implementation is kept private, to avoid defining
`Optional.__init__()` in the public API.
"""
def __init__(self, variant_tensor, element_spec):
self._variant_tensor = variant_tensor
self._element_spec = element_spec
def has_value(self, name=None):
return gen_dataset_ops.optional_has_value(self._variant_tensor, name=name)
def get_value(self, name=None):
# TODO(b/110122868): Consolidate the restructuring logic with similar logic
# in `Iterator.get_next()` and `StructuredFunctionWrapper`.
with ops.name_scope(name, "OptionalGetValue",
[self._variant_tensor]) as scope:
return structure.from_tensor_list(
self._element_spec,
gen_dataset_ops.optional_get_value(
self._variant_tensor,
name=scope,
output_types=structure.get_flat_tensor_types(
self._element_spec),
output_shapes=structure.get_flat_tensor_shapes(
self._element_spec)))
@property
def element_spec(self):
return self._element_spec
@property
def _type_spec(self):
return OptionalSpec.from_value(self)
@tf_export(
"OptionalSpec", v1=["OptionalSpec", "data.experimental.OptionalStructure"])
class OptionalSpec(type_spec.TypeSpec):
"""Type specification for `tf.experimental.Optional`.
For instance, `tf.OptionalSpec` can be used to define a tf.function that takes
`tf.experimental.Optional` as an input argument:
>>> @tf.function(input_signature=[tf.OptionalSpec(
... tf.TensorSpec(shape=(), dtype=tf.int32, name=None))])
... def maybe_square(optional):
... if optional.has_value():
... x = optional.get_value()
... return x * x
... return -1
>>> optional = tf.experimental.Optional.from_value(5)
>>> print(maybe_square(optional))
tf.Tensor(25, shape=(), dtype=int32)
Attributes:
element_spec: A nested structure of `TypeSpec` objects that represents the
type specification of the optional element.
"""
__slots__ = ["_element_spec"]
def __init__(self, element_spec):
self._element_spec = element_spec
@property
def value_type(self):
return _OptionalImpl
def _serialize(self):
return (self._element_spec,)
@property
def _component_specs(self):
return [tensor_spec.TensorSpec((), dtypes.variant)]
def _to_components(self, value):
return [value._variant_tensor] # pylint: disable=protected-access
def _from_components(self, flat_value):
# pylint: disable=protected-access
return _OptionalImpl(flat_value[0], self._element_spec)
@staticmethod
def from_value(value):
return OptionalSpec(value.element_spec)
def _to_legacy_output_types(self):
return self
def _to_legacy_output_shapes(self):
return self
def _to_legacy_output_classes(self):
return self