STT-tensorflow/tensorflow/python/data/experimental/__init__.py

167 lines
7.4 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Experimental API for building input pipelines.
This module contains experimental `Dataset` sources and transformations that can
be used in conjunction with the `tf.data.Dataset` API. Note that the
`tf.data.experimental` API is not subject to the same backwards compatibility
guarantees as `tf.data`, but we will provide deprecation advice in advance of
removing existing functionality.
See [Importing Data](https://tensorflow.org/guide/datasets) for an overview.
@@AutoShardPolicy
@@Counter
@@CheckpointInputPipelineHook
@@CsvDataset
@@DatasetStructure
@@DistributeOptions
@@MapVectorizationOptions
@@OptimizationOptions
@@Optional
@@OptionalStructure
@@RaggedTensorStructure
@@RandomDataset
@@Reducer
@@SparseTensorStructure
@@SqlDataset
@@StatsAggregator
@@StatsOptions
@@Structure
@@TFRecordWriter
@@TensorArrayStructure
@@TensorStructure
@@ThreadingOptions
@@assert_cardinality
@@bucket_by_sequence_length
@@bytes_produced_stats
@@cardinality
@@choose_from_datasets
@@copy_to_device
@@dense_to_ragged_batch
@@dense_to_sparse_batch
@@distribute
@@enumerate_dataset
@@from_variant
@@get_next_as_optional
@@get_single_element
@@get_structure
@@group_by_reducer
@@group_by_window
@@ignore_errors
@@latency_stats
@@load
@@make_batched_features_dataset
@@make_csv_dataset
@@make_saveable_from_iterator
@@map_and_batch
@@map_and_batch_with_legacy_function
@@parallel_interleave
@@parse_example_dataset
@@prefetch_to_device
@@rejection_resample
@@sample_from_datasets
@@save
@@scan
@@shuffle_and_repeat
@@snapshot
@@take_while
@@to_variant
@@unbatch
@@unique
@@AUTOTUNE
@@INFINITE_CARDINALITY
@@UNKNOWN_CARDINALITY
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# pylint: disable=unused-import
from tensorflow.python.data.experimental import service
from tensorflow.python.data.experimental.ops.batching import dense_to_ragged_batch
from tensorflow.python.data.experimental.ops.batching import dense_to_sparse_batch
from tensorflow.python.data.experimental.ops.batching import map_and_batch
from tensorflow.python.data.experimental.ops.batching import map_and_batch_with_legacy_function
from tensorflow.python.data.experimental.ops.batching import unbatch
from tensorflow.python.data.experimental.ops.cardinality import assert_cardinality
from tensorflow.python.data.experimental.ops.cardinality import cardinality
from tensorflow.python.data.experimental.ops.cardinality import INFINITE as INFINITE_CARDINALITY
from tensorflow.python.data.experimental.ops.cardinality import UNKNOWN as UNKNOWN_CARDINALITY
from tensorflow.python.data.experimental.ops.counter import Counter
from tensorflow.python.data.experimental.ops.distribute_options import AutoShardPolicy
from tensorflow.python.data.experimental.ops.distribute_options import DistributeOptions
from tensorflow.python.data.experimental.ops.enumerate_ops import enumerate_dataset
from tensorflow.python.data.experimental.ops.error_ops import ignore_errors
from tensorflow.python.data.experimental.ops.get_single_element import get_single_element
from tensorflow.python.data.experimental.ops.grouping import bucket_by_sequence_length
from tensorflow.python.data.experimental.ops.grouping import group_by_reducer
from tensorflow.python.data.experimental.ops.grouping import group_by_window
from tensorflow.python.data.experimental.ops.grouping import Reducer
from tensorflow.python.data.experimental.ops.interleave_ops import choose_from_datasets
from tensorflow.python.data.experimental.ops.interleave_ops import parallel_interleave
from tensorflow.python.data.experimental.ops.interleave_ops import sample_from_datasets
from tensorflow.python.data.experimental.ops.io import load
from tensorflow.python.data.experimental.ops.io import save
from tensorflow.python.data.experimental.ops.iterator_ops import CheckpointInputPipelineHook
from tensorflow.python.data.experimental.ops.iterator_ops import make_saveable_from_iterator
from tensorflow.python.data.experimental.ops.optimization_options import MapVectorizationOptions
from tensorflow.python.data.experimental.ops.optimization_options import OptimizationOptions
from tensorflow.python.data.experimental.ops.parsing_ops import parse_example_dataset
from tensorflow.python.data.experimental.ops.prefetching_ops import copy_to_device
from tensorflow.python.data.experimental.ops.prefetching_ops import prefetch_to_device
from tensorflow.python.data.experimental.ops.random_ops import RandomDataset
from tensorflow.python.data.experimental.ops.readers import CsvDataset
from tensorflow.python.data.experimental.ops.readers import make_batched_features_dataset
from tensorflow.python.data.experimental.ops.readers import make_csv_dataset
from tensorflow.python.data.experimental.ops.readers import SqlDataset
from tensorflow.python.data.experimental.ops.resampling import rejection_resample
from tensorflow.python.data.experimental.ops.scan_ops import scan
from tensorflow.python.data.experimental.ops.shuffle_ops import shuffle_and_repeat
from tensorflow.python.data.experimental.ops.snapshot import snapshot
from tensorflow.python.data.experimental.ops.stats_aggregator import StatsAggregator
from tensorflow.python.data.experimental.ops.stats_ops import bytes_produced_stats
from tensorflow.python.data.experimental.ops.stats_ops import latency_stats
from tensorflow.python.data.experimental.ops.stats_options import StatsOptions
from tensorflow.python.data.experimental.ops.take_while_ops import take_while
from tensorflow.python.data.experimental.ops.threading_options import ThreadingOptions
from tensorflow.python.data.experimental.ops.unique import unique
from tensorflow.python.data.experimental.ops.writers import TFRecordWriter
from tensorflow.python.data.ops.dataset_ops import AUTOTUNE
from tensorflow.python.data.ops.dataset_ops import DatasetSpec as DatasetStructure
from tensorflow.python.data.ops.dataset_ops import from_variant
from tensorflow.python.data.ops.dataset_ops import get_structure
from tensorflow.python.data.ops.dataset_ops import to_variant
from tensorflow.python.data.ops.iterator_ops import get_next_as_optional
from tensorflow.python.data.ops.optional_ops import Optional
from tensorflow.python.data.ops.optional_ops import OptionalSpec as OptionalStructure
from tensorflow.python.data.util.structure import _RaggedTensorStructure as RaggedTensorStructure
from tensorflow.python.data.util.structure import _SparseTensorStructure as SparseTensorStructure
from tensorflow.python.data.util.structure import _TensorArrayStructure as TensorArrayStructure
from tensorflow.python.data.util.structure import _TensorStructure as TensorStructure
from tensorflow.python.framework.type_spec import TypeSpec as Structure
# pylint: enable=unused-import
from tensorflow.python.util.all_util import remove_undocumented
_allowed_symbols = [
"service",
]
remove_undocumented(__name__, _allowed_symbols)