STT-tensorflow/tensorflow/lite/python/optimize/calibrator.py
Elena Zhelezina 507c754931 Fix for pylint errors.
Change-Id: Idd96d7a41fd459c86ab0f6fbb63e5d543509145d
2020-06-09 17:47:16 +01:00

156 lines
6.0 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python wrapper for post training quantization with calibration."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.util.lazy_loader import LazyLoader
from tensorflow.lite.python import lite_constants
# Lazy load since some of the performance benchmark skylark rules
# break dependencies. Must use double quotes to match code internal rewrite
# rule.
_calibration_wrapper = LazyLoader(
"_calibration_wrapper", globals(),
"tensorflow.lite.python.optimize."
"_pywrap_tensorflow_lite_calibration_wrapper")
class Calibrator(object):
"""Calibrates a floating point model and then quantizes it.
This is an internal class, not a public interface.
"""
def __init__(self, model_content):
"""Constructor.
Args:
model_content: Content of a TF-Lite Flatbuffer file.
Raises:
ValueError: If the calibrator was unable to open the model.
"""
if not model_content:
raise ValueError("`model_content` must be specified.")
try:
self._calibrator = (
_calibration_wrapper.CalibrationWrapper(model_content))
except Exception as e:
raise ValueError("Failed to parse the model: %s." % e)
if not self._calibrator:
raise ValueError("Failed to parse the model.")
def calibrate_and_quantize(self,
dataset_gen,
input_type,
output_type,
allow_float,
activations_type=lite_constants.INT8,
resize_input=True):
"""Calibrates the model with specified generator and then quantizes it.
The input shapes of the calibrator are resized with the calibration data if
`resize_input` is set.
Returns:
A quantized model.
Args:
dataset_gen: A generator that generates calibration samples.
input_type: A tf.dtype representing the desired real-value input type.
output_type: A tf.dtype representing the desired real-value output type.
allow_float: A boolean. False if the resulting model cannot perform float
computation, useful when targeting an integer-only backend.
If False, an error will be thrown if an operation cannot be
quantized, otherwise the model will fallback to float ops.
activations_type: A tf.dtype representing the desired type for
activations.
resize_input: A boolean. True if the shape of the sample data is different
from the input.
"""
initialized = False
for sample in dataset_gen():
if not initialized:
initialized = True
if resize_input:
self._calibrator.Prepare([list(s.shape) for s in sample])
else:
self._calibrator.Prepare()
self._calibrator.FeedTensor(sample)
return self._calibrator.QuantizeModel(
np.dtype(input_type.as_numpy_dtype()).num,
np.dtype(output_type.as_numpy_dtype()).num, allow_float,
np.dtype(activations_type.as_numpy_dtype()).num)
def calibrate_and_quantize_single(self,
dataset_gen,
input_type,
output_type,
allow_float,
op_output_name,
resize_input=True):
"""Calibrates the model with specified generator and then quantizes it.
Only the single op with output op_output_name will be quantized.
The input shapes of the calibrator are resized with the calibration data.
Returns:
A quantized model.
Args:
dataset_gen: A generator that generates calibration samples.
input_type: A tf.dtype representing the desired real-value input type.
output_type: A tf.dtype representing the desired real-value output type.
allow_float: A boolean. False if the resulting model cannot perform float
computation, useful when targeting an integer-only backend. If False, an
error will be thrown if an operation cannot be quantized, otherwise the
model will fallback to float ops.
op_output_name: A string, only this op will be quantized.
resize_input: A boolean. True if the shape of the sample data is different
from the input.
"""
initialized = False
for sample in dataset_gen():
if not initialized:
initialized = True
if resize_input:
self._calibrator.Prepare([list(s.shape) for s in sample])
else:
self._calibrator.Prepare()
self._calibrator.FeedTensor(sample)
return self._calibrator.QuantizeModel(
np.dtype(input_type.as_numpy_dtype()).num,
np.dtype(output_type.as_numpy_dtype()).num, allow_float, op_output_name)
def calibrate(self, dataset_gen):
"""Calibrates the model with specified generator.
Returns:
A model with min and max calibration stats.
Args:
dataset_gen: A generator that generates calibration samples.
"""
initialized = False
for sample in dataset_gen():
if not initialized:
initialized = True
self._calibrator.Prepare([list(s.shape) for s in sample])
self._calibrator.FeedTensor(sample)
return self._calibrator.Calibrate()