422 lines
17 KiB
C++
422 lines
17 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/reference/comparisons.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/string_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace comparisons {
|
|
namespace {
|
|
|
|
constexpr int kInputTensor1 = 0;
|
|
constexpr int kInputTensor2 = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
TfLiteStatus ComparisonPrepareCommon(TfLiteContext* context, TfLiteNode* node,
|
|
bool is_string_allowed) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
// Don't support string.
|
|
if (!is_string_allowed) {
|
|
TF_LITE_ENSURE(context, input1->type != kTfLiteString);
|
|
}
|
|
// Currently only support tensors have the same type.
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
|
|
output->type = kTfLiteBool;
|
|
|
|
bool requires_broadcast = !HaveSameShapes(input1, input2);
|
|
|
|
TfLiteIntArray* output_size = nullptr;
|
|
if (requires_broadcast) {
|
|
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
|
|
context, input1, input2, &output_size));
|
|
} else {
|
|
output_size = TfLiteIntArrayCopy(input1->dims);
|
|
}
|
|
|
|
return context->ResizeTensor(context, output, output_size);
|
|
}
|
|
|
|
TfLiteStatus ComparisonPrepare(TfLiteContext* context, TfLiteNode* node) {
|
|
return ComparisonPrepareCommon(context, node, false);
|
|
}
|
|
|
|
TfLiteStatus ComparisonPrepareStringAllowed(TfLiteContext* context,
|
|
TfLiteNode* node) {
|
|
return ComparisonPrepareCommon(context, node, true);
|
|
}
|
|
|
|
template <typename input_dtype, reference_ops::ComparisonFn<int32> opname>
|
|
void ComparisonQuantized(const TfLiteTensor* input1, const TfLiteTensor* input2,
|
|
TfLiteTensor* output, bool requires_broadcast) {
|
|
if (input1->type == kTfLiteUInt8 || input1->type == kTfLiteInt8) {
|
|
auto input1_offset = -input1->params.zero_point;
|
|
auto input2_offset = -input2->params.zero_point;
|
|
const int left_shift = 8;
|
|
|
|
int32 input1_multiplier;
|
|
int input1_shift;
|
|
QuantizeMultiplierSmallerThanOneExp(input1->params.scale,
|
|
&input1_multiplier, &input1_shift);
|
|
int32 input2_multiplier;
|
|
int input2_shift;
|
|
QuantizeMultiplierSmallerThanOneExp(input2->params.scale,
|
|
&input2_multiplier, &input2_shift);
|
|
|
|
ComparisonParams op_params;
|
|
op_params.left_shift = left_shift;
|
|
op_params.input1_offset = input1_offset;
|
|
op_params.input1_multiplier = input1_multiplier;
|
|
op_params.input1_shift = input1_shift;
|
|
op_params.input2_offset = input2_offset;
|
|
op_params.input2_multiplier = input2_multiplier;
|
|
op_params.input2_shift = input2_shift;
|
|
if (requires_broadcast) {
|
|
reference_ops::BroadcastComparison4DSlowWithScaling<input_dtype, opname>(
|
|
op_params, GetTensorShape(input1), GetTensorData<input_dtype>(input1),
|
|
GetTensorShape(input2), GetTensorData<input_dtype>(input2),
|
|
GetTensorShape(output), GetTensorData<bool>(output));
|
|
} else {
|
|
reference_ops::ComparisonWithScaling<input_dtype, opname>(
|
|
op_params, GetTensorShape(input1), GetTensorData<input_dtype>(input1),
|
|
GetTensorShape(input2), GetTensorData<input_dtype>(input2),
|
|
GetTensorShape(output), GetTensorData<bool>(output));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, reference_ops::ComparisonFn<T> opname>
|
|
void Comparison(const TfLiteTensor* input1, const TfLiteTensor* input2,
|
|
TfLiteTensor* output, bool requires_broadcast) {
|
|
ComparisonParams op_params;
|
|
requires_broadcast
|
|
? reference_ops::BroadcastComparison4DSlowImpl<T, opname>(
|
|
op_params, GetTensorShape(input1), GetTensorData<T>(input1),
|
|
GetTensorShape(input2), GetTensorData<T>(input2),
|
|
GetTensorShape(output), GetTensorData<bool>(output))
|
|
: reference_ops::ComparisonImpl<T, opname>(
|
|
op_params, GetTensorShape(input1), GetTensorData<T>(input1),
|
|
GetTensorShape(input2), GetTensorData<T>(input2),
|
|
GetTensorShape(output), GetTensorData<bool>(output));
|
|
}
|
|
|
|
void ComparisonString(bool (*opname)(const StringRef&, const StringRef&),
|
|
const TfLiteTensor* input1, const TfLiteTensor* input2,
|
|
TfLiteTensor* output, bool requires_broadcast) {
|
|
bool* output_data = GetTensorData<bool>(output);
|
|
if (requires_broadcast) {
|
|
reference_ops::BroadcastComparison4DSlowStringImpl(
|
|
opname, GetTensorShape(input1), input1, GetTensorShape(input2), input2,
|
|
GetTensorShape(output), output_data);
|
|
} else {
|
|
reference_ops::ComparisonStringImpl(opname, GetTensorShape(input1), input1,
|
|
GetTensorShape(input2), input2,
|
|
GetTensorShape(output), output_data);
|
|
}
|
|
}
|
|
|
|
TfLiteStatus EqualEval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
bool requires_broadcast = !HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteBool:
|
|
Comparison<bool, reference_ops::EqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteFloat32:
|
|
Comparison<float, reference_ops::EqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt32:
|
|
Comparison<int32_t, reference_ops::EqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt64:
|
|
Comparison<int64_t, reference_ops::EqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
ComparisonQuantized<uint8_t, reference_ops::EqualFn>(
|
|
input1, input2, output, requires_broadcast);
|
|
break;
|
|
case kTfLiteInt8:
|
|
ComparisonQuantized<int8_t, reference_ops::EqualFn>(
|
|
input1, input2, output, requires_broadcast);
|
|
break;
|
|
case kTfLiteString:
|
|
ComparisonString(reference_ops::StringRefEqualFn, input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
default:
|
|
context->ReportError(
|
|
context,
|
|
"Does not support type %d, requires bool|float|int|uint8|string",
|
|
input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus NotEqualEval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
bool requires_broadcast = !HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteBool:
|
|
Comparison<bool, reference_ops::NotEqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteFloat32:
|
|
Comparison<float, reference_ops::NotEqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt32:
|
|
Comparison<int32_t, reference_ops::NotEqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt64:
|
|
Comparison<int64_t, reference_ops::NotEqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
ComparisonQuantized<uint8_t, reference_ops::NotEqualFn>(
|
|
input1, input2, output, requires_broadcast);
|
|
break;
|
|
case kTfLiteInt8:
|
|
ComparisonQuantized<int8_t, reference_ops::NotEqualFn>(
|
|
input1, input2, output, requires_broadcast);
|
|
break;
|
|
case kTfLiteString:
|
|
ComparisonString(reference_ops::StringRefNotEqualFn, input1, input2,
|
|
output, requires_broadcast);
|
|
break;
|
|
default:
|
|
context->ReportError(
|
|
context,
|
|
"Does not support type %d, requires bool|float|int|uint8|string",
|
|
input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus GreaterEval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
bool requires_broadcast = !HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteFloat32:
|
|
Comparison<float, reference_ops::GreaterFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt32:
|
|
Comparison<int32_t, reference_ops::GreaterFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt64:
|
|
Comparison<int64_t, reference_ops::GreaterFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
ComparisonQuantized<uint8_t, reference_ops::GreaterFn>(
|
|
input1, input2, output, requires_broadcast);
|
|
break;
|
|
case kTfLiteInt8:
|
|
ComparisonQuantized<int8_t, reference_ops::GreaterFn>(
|
|
input1, input2, output, requires_broadcast);
|
|
break;
|
|
default:
|
|
context->ReportError(context,
|
|
"Does not support type %d, requires float|int|uint8",
|
|
input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus GreaterEqualEval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
bool requires_broadcast = !HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteFloat32:
|
|
Comparison<float, reference_ops::GreaterEqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt32:
|
|
Comparison<int32_t, reference_ops::GreaterEqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt64:
|
|
Comparison<int64_t, reference_ops::GreaterEqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
ComparisonQuantized<uint8_t, reference_ops::GreaterEqualFn>(
|
|
input1, input2, output, requires_broadcast);
|
|
break;
|
|
case kTfLiteInt8:
|
|
ComparisonQuantized<int8_t, reference_ops::GreaterEqualFn>(
|
|
input1, input2, output, requires_broadcast);
|
|
break;
|
|
default:
|
|
context->ReportError(context,
|
|
"Does not support type %d, requires float|int|uint8",
|
|
input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus LessEval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
bool requires_broadcast = !HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteFloat32:
|
|
Comparison<float, reference_ops::LessFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt32:
|
|
Comparison<int32_t, reference_ops::LessFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt64:
|
|
Comparison<int64_t, reference_ops::LessFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
ComparisonQuantized<uint8_t, reference_ops::LessFn>(
|
|
input1, input2, output, requires_broadcast);
|
|
break;
|
|
case kTfLiteInt8:
|
|
ComparisonQuantized<int8_t, reference_ops::LessFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
default:
|
|
context->ReportError(context,
|
|
"Does not support type %d, requires float|int|uint8",
|
|
input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus LessEqualEval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
bool requires_broadcast = !HaveSameShapes(input1, input2);
|
|
switch (input1->type) {
|
|
case kTfLiteFloat32:
|
|
Comparison<float, reference_ops::LessEqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt32:
|
|
Comparison<int32_t, reference_ops::LessEqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteInt64:
|
|
Comparison<int64_t, reference_ops::LessEqualFn>(input1, input2, output,
|
|
requires_broadcast);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
ComparisonQuantized<uint8_t, reference_ops::LessEqualFn>(
|
|
input1, input2, output, requires_broadcast);
|
|
break;
|
|
case kTfLiteInt8:
|
|
ComparisonQuantized<int8_t, reference_ops::LessEqualFn>(
|
|
input1, input2, output, requires_broadcast);
|
|
break;
|
|
default:
|
|
context->ReportError(context,
|
|
"Does not support type %d, requires float|int|uint8",
|
|
input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace comparisons
|
|
|
|
TfLiteRegistration* Register_EQUAL() {
|
|
static TfLiteRegistration r = {nullptr, nullptr,
|
|
comparisons::ComparisonPrepareStringAllowed,
|
|
comparisons::EqualEval};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_NOT_EQUAL() {
|
|
static TfLiteRegistration r = {nullptr, nullptr,
|
|
comparisons::ComparisonPrepareStringAllowed,
|
|
comparisons::NotEqualEval};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_GREATER() {
|
|
static TfLiteRegistration r = {nullptr, nullptr,
|
|
comparisons::ComparisonPrepare,
|
|
comparisons::GreaterEval};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_GREATER_EQUAL() {
|
|
static TfLiteRegistration r = {nullptr, nullptr,
|
|
comparisons::ComparisonPrepare,
|
|
comparisons::GreaterEqualEval};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_LESS() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, comparisons::ComparisonPrepare, comparisons::LessEval};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_LESS_EQUAL() {
|
|
static TfLiteRegistration r = {nullptr, nullptr,
|
|
comparisons::ComparisonPrepare,
|
|
comparisons::LessEqualEval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|