STT-tensorflow/tensorflow/compiler/xla/python_api/xla_literal.py
2019-01-28 20:00:38 +01:00

96 lines
3.8 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ======================================
"""XLA LiteralProto utilities."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as _np # Avoids becoming a part of public Tensorflow API.
from tensorflow.compiler.xla import xla_data_pb2
from tensorflow.compiler.xla.python_api import types
from tensorflow.compiler.xla.python_api import xla_shape
def ConvertLiteralToNumpyArray(literal):
"""Converts a XLA literal to a Numpy array."""
element_type = literal.shape.element_type
if element_type == xla_data_pb2.TUPLE:
return tuple(
ConvertLiteralToNumpyArray(subliteral)
for subliteral in literal.tuple_literals)
type_record = types.MAP_XLA_TYPE_TO_RECORD[element_type]
if not literal.shape.dimensions:
return _np.array(
getattr(literal, type_record.literal_field_name)[0],
type_record.numpy_dtype)
else:
# Infer the proper Numpy order from the LiteralProto's layout. The repeated
# field representing the array's content in the Literal is linearized.
# Reading is done in two steps:
#
# 1. Read the array as 1D from the LiteralProto repeated field.
# 2. Reshape the array to its proper shape, using the right order depending
# on the LiteralProto's layout.
layout_order = literal.shape.layout.minor_to_major
numpy_shape = tuple(literal.shape.dimensions)
if layout_order == range(len(literal.shape.dimensions)):
numpy_reshaper = lambda arr: arr.reshape(numpy_shape, order='F')
elif layout_order == range(len(literal.shape.dimensions) - 1, -1, -1):
numpy_reshaper = lambda arr: arr.reshape(numpy_shape, order='C')
else:
raise NotImplementedError('Unsupported layout: {0}'.format(layout_order))
ndarray = _np.array(
getattr(literal, type_record.literal_field_name),
copy=False,
dtype=type_record.numpy_dtype)
return numpy_reshaper(ndarray)
def _ConvertNumpyArrayToLiteral(ndarray):
"""Converts a Numpy array to a XLA literal."""
type_record = types.MAP_DTYPE_TO_RECORD[str(ndarray.dtype)]
literal = xla_data_pb2.LiteralProto()
literal.shape.CopyFrom(xla_shape.CreateShapeFromNumpy(ndarray).message)
if ndarray.ndim == 0:
getattr(literal, type_record.literal_field_name).append(
ndarray.astype(type_record.literal_field_type).item())
else:
# Ndarrays with boolean dtypes need special type conversion with protobufs
if ndarray.dtype in {_np.bool_, _np.dtype('bool')}:
for element in _np.nditer(ndarray):
getattr(literal, type_record.literal_field_name).append(
type_record.literal_field_type(element))
else:
ndarray_flat = ndarray.ravel(order='A')
getattr(literal, type_record.literal_field_name).extend(ndarray_flat)
return literal
def ConvertNumpyArrayToLiteral(value):
"""Converts a Numpy array or a nested tuple thereof to an XLA literal."""
if isinstance(value, tuple):
literal = xla_data_pb2.LiteralProto()
literal.shape.CopyFrom(xla_shape.CreateShapeFromNumpy(value).message)
for component in value:
component_literal = literal.tuple_literals.add()
component_literal.CopyFrom(ConvertNumpyArrayToLiteral(component))
return literal
else:
return _ConvertNumpyArrayToLiteral(value)