STT-tensorflow/tensorflow/compiler/xla/index_util.h
Mark Heffernan bd737c846c Replace Shape with a C++ class in XLA.
No functional change. Rename the proto message Shape to ShapeProto and define an in-place replacement C++ class named Shape with an interface which mirrors the protobuf generated code interface. Having Shape as a C++ class enables greater flexibility in the interface, enables enforcement of invariants, and potential performance improvements.

PiperOrigin-RevId: 223252977
2018-11-28 16:08:45 -08:00

89 lines
3.3 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Utility functions related to layouts of Shapes.
#ifndef TENSORFLOW_COMPILER_XLA_INDEX_UTIL_H_
#define TENSORFLOW_COMPILER_XLA_INDEX_UTIL_H_
#include <vector>
#include "absl/types/span.h"
#include "tensorflow/compiler/xla/shape.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/xla_data.pb.h"
#include "tensorflow/core/platform/macros.h"
namespace xla {
// Namespaced collection of (static) utilities related to indexing into
// multidimensional arrays.
class IndexUtil {
public:
// Converts a multidimensional index (eg {x, y, z}) into a linear index based
// on the shape and its layout. The first index in the multi_index is
// dimension 0.
static int64 MultidimensionalIndexToLinearIndex(
const Shape& shape, absl::Span<const int64> multi_index);
// Converts a linear index into multidimensional index (eg {x, y, z}) based on
// the shape and its layout. The first index in the returned multidimensional
// index is dimension 0.
static std::vector<int64> LinearIndexToMultidimensionalIndex(
const Shape& shape, int64 linear_index);
// Bumps a sequence of indices; e.g. {0,0,0,0} up by one index value; e.g. to
// {0,0,0,1}. This is akin to std::next_permutation. If the index hits a limit
// for the provided shape, the next most significant index is bumped, in a
// counting-up process.
//
// E.g. for shape f32[2,3]
// {0,0}=>{0,1}
// {0,1}=>{0,2}
// {0,2}=>{1,0}
// etc.
//
// This is useful for traversing the indices in a literal.
//
// Returns true iff the indices were successfully bumped; false if we've hit
// the limit where it can no longer be bumped in-bounds.
static bool BumpIndices(const Shape& shape, absl::Span<int64> indices);
// Calculates the stride size (in number of elements, not byte size) of a
// given logical shape dimension (from 0 to rank-1).
// Example:
// GetDimensionStride(F32[5,8,10,4]{3,2,1,0}, 1) ==
// sizeof(dimension(3)) * sizeof(dimension(2)) == 4 * 10
static int64 GetDimensionStride(const Shape& shape, int64 dimension);
// Returns true iff the given multi-index is contained in the bounds for the
// shape.
static bool IndexInBounds(const Shape& shape, absl::Span<const int64> index);
// Compares the given indices in lexicographic order. lhs[0] and rhs[0] are
// compared first, and lhs[rank-1] and rhs[rank-1] last. If lhs is larger,
// then -1 is returned. If rhs is larger, then 1 is returned. Otherwise, 0 is
// returned.
static int CompareIndices(absl::Span<const int64> lhs,
absl::Span<const int64> rhs);
private:
TF_DISALLOW_COPY_AND_ASSIGN(IndexUtil);
};
} // namespace xla
#endif // TENSORFLOW_COMPILER_XLA_INDEX_UTIL_H_