STT-tensorflow/tensorflow/compiler/tf2xla/kernels/roll_op.cc
Brian Zhao 556824565d Automated g4 rollback of changelist 304856650.
PiperOrigin-RevId: 305076580
Change-Id: I98886941dbfb25acd99d6ca2601eaee6dc657034
2020-04-06 11:29:58 -07:00

100 lines
4.0 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
#include "tensorflow/compiler/xla/client/lib/constants.h"
#include "tensorflow/compiler/xla/client/lib/slicing.h"
#include "tensorflow/core/lib/core/errors.h"
namespace tensorflow {
namespace {
class RollOp : public XlaOpKernel {
public:
explicit RollOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}
void Compile(XlaOpKernelContext* ctx) override {
const TensorShape input_shape = ctx->InputShape(0);
xla::XlaOp shift = ctx->Input(1);
const TensorShape shift_shape = ctx->InputShape(1);
const TensorShape axis_shape = ctx->InputShape(2);
int64 input_dims = input_shape.dims();
OP_REQUIRES(ctx, input_dims >= 1,
errors::InvalidArgument("input must be 1-D or higher"));
OP_REQUIRES(ctx, shift_shape.dims() <= 1,
errors::InvalidArgument(
"shift must be a scalar or a 1-D vector. Found: ",
shift_shape.DebugString()));
OP_REQUIRES(ctx, axis_shape.dims() <= 1,
errors::InvalidArgument(
"axis must be a scalar or a 1-D vector. Found: ",
shift_shape.DebugString()));
OP_REQUIRES(
ctx, shift_shape == axis_shape,
errors::InvalidArgument("shift and axis must have the same size"));
xla::Literal axis;
OP_REQUIRES_OK(ctx, ctx->ConstantInput(2, &axis));
xla::XlaOp output = ctx->Input(0);
xla::PrimitiveType shift_type = ctx->input_xla_type(1);
int64 num_axes = axis_shape.dims() == 0 ? 1 : axis_shape.dim_size(0);
for (int64 i = 0; i != num_axes; ++i) {
int64 cur_axis = axis_shape.dims() == 0 ? *axis.GetIntegralAsS64({})
: *axis.GetIntegralAsS64({i});
OP_REQUIRES(ctx, cur_axis >= -input_dims && cur_axis < input_dims,
errors::InvalidArgument(
absl::StrCat("axis ", cur_axis, " is out of range [-",
input_dims, ", ", input_dims, ").")));
if (cur_axis < 0) {
cur_axis += input_dims;
}
xla::XlaOp offset =
shift_shape.dims() == 0
? shift
: xla::Reshape(xla::SliceInDim(shift, /*start_index=*/i,
/*limit_index=*/i + 1,
/*stride=*/1, /*dimno=*/0),
{});
xla::XlaOp axis_size = xla::ConstantR0WithType(
ctx->builder(), shift_type, input_shape.dim_size(cur_axis));
// Adjust large offsets into [0, axis_size). This also makes negative
// offsets positive.
offset = ((offset % axis_size) + axis_size) % axis_size;
// Stack two copies of the dimension, then slice from the calculated
// offset.
xla::XlaOp concat =
xla::ConcatInDim(ctx->builder(), {output, output}, cur_axis);
std::vector<xla::XlaOp> start_indices(
input_shape.dims(), xla::Zero(ctx->builder(), shift_type));
start_indices[cur_axis] = axis_size - offset;
output =
xla::DynamicSlice(concat, start_indices, input_shape.dim_sizes());
}
ctx->SetOutput(0, output);
}
private:
TF_DISALLOW_COPY_AND_ASSIGN(RollOp);
};
REGISTER_XLA_OP(Name("Roll").CompileTimeConstantInput("axis"), RollOp);
} // namespace
} // namespace tensorflow