Before and after logic is equivalent. However, performance could have an impact. PiperOrigin-RevId: 304057589 Change-Id: I2ad9e923b1c966f46eba91ae47e0e632b74cff72
171 lines
7.0 KiB
Python
171 lines
7.0 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for stateless random-number generation ops."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.kernel_tests.random import util as \
|
|
random_test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import stateless_random_ops as stateless
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class StatelessRandomOpsTest(xla_test.XLATestCase):
|
|
"""Test cases for stateless random-number generator operators."""
|
|
|
|
def _random_types(self, include_int=False):
|
|
allowed_types = {dtypes.float64, dtypes.float32, dtypes.bfloat16}
|
|
if include_int:
|
|
allowed_types.update({dtypes.int32, dtypes.int64})
|
|
return self.all_tf_types & allowed_types
|
|
|
|
def testDeterminism(self):
|
|
# Stateless values should be equal iff the seeds are equal (roughly)
|
|
with self.session(), self.test_scope():
|
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
|
seeds = [(x, y) for x in range(5) for y in range(5)] * 3 # pylint: disable=g-complex-comprehension
|
|
for stateless_op in [
|
|
stateless.stateless_random_uniform, stateless.stateless_random_normal
|
|
]:
|
|
for shape in (), (3,), (2, 5):
|
|
for dtype in self._random_types():
|
|
# Skip bfloat16. The result of bfloat16 is truncated from 32-bit
|
|
# result. With different seeds, the 32-bit results are different,
|
|
# but the truncated 16-bit results might be the same.
|
|
if dtype == dtypes.bfloat16:
|
|
continue
|
|
pure = stateless_op(shape, seed=seed_t, dtype=dtype)
|
|
values = [(seed, pure.eval(feed_dict={
|
|
seed_t: seed
|
|
})) for seed in seeds]
|
|
for s0, v0 in values:
|
|
for s1, v1 in values:
|
|
self.assertEqual(s0 == s1, np.all(v0 == v1))
|
|
|
|
def testRandomUniformIsInRange(self):
|
|
with self.session() as sess, self.test_scope():
|
|
for dtype in self._random_types(include_int=True):
|
|
maxval = 1
|
|
if dtype.is_integer:
|
|
maxval = 100
|
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
|
x = stateless.stateless_random_uniform(
|
|
shape=[1000], seed=seed_t, maxval=maxval, dtype=dtype)
|
|
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
|
|
self.assertTrue(np.all(y >= 0))
|
|
self.assertTrue(np.all(y < maxval))
|
|
|
|
def testDistributionOfStatelessRandomUniform(self):
|
|
"""Use Pearson's Chi-squared test to test for uniformity."""
|
|
with self.session() as sess, self.test_scope():
|
|
for dtype in self._random_types(include_int=True):
|
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
|
n = 1000
|
|
maxval = 1
|
|
if dtype.is_integer:
|
|
maxval = 100
|
|
x = stateless.stateless_random_uniform(
|
|
shape=[n], seed=seed_t, maxval=maxval, dtype=dtype)
|
|
y = sess.run(x, {seed_t: [565656, 121212]})
|
|
# Convert y to float and normalize its value to range [0, 1) when
|
|
# maxval != 1.
|
|
y = y.astype(float) / maxval
|
|
# Tests that the values are distributed amongst 10 bins with equal
|
|
# probability. 16.92 is the Chi^2 value for 9 degrees of freedom with
|
|
# p=0.05. This test is probabilistic and would be flaky if the random
|
|
# seed were not fixed.
|
|
self.assertLess(random_test_util.chi_squared(y, 10), 16.92)
|
|
|
|
def testRandomNormalIsFinite(self):
|
|
with self.session() as sess, self.test_scope():
|
|
for dtype in self._random_types():
|
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
|
x = stateless.stateless_random_normal(
|
|
shape=[10000], seed=seed_t, dtype=dtype)
|
|
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
|
|
self.assertTrue(np.all(np.isfinite(y)))
|
|
|
|
def testDistributionOfStatelessRandomNormal(self):
|
|
"""Use Anderson-Darling test to test distribution appears normal."""
|
|
with self.session() as sess, self.test_scope():
|
|
for dtype in self._random_types():
|
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
|
n = 1000
|
|
x = stateless.stateless_random_normal(
|
|
shape=[n], seed=seed_t, dtype=dtype)
|
|
y = sess.run(x, {seed_t: [25252, 314159]})
|
|
# The constant 2.492 is the 5% critical value for the Anderson-Darling
|
|
# test where the mean and variance are known. This test is probabilistic
|
|
# so to avoid flakiness the seed is fixed.
|
|
self.assertLess(
|
|
random_test_util.anderson_darling(y.astype(float)), 2.492)
|
|
|
|
def testTruncatedNormal(self):
|
|
for dtype in self._random_types():
|
|
with self.session() as sess, self.test_scope():
|
|
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
|
|
n = 10000000
|
|
x = stateless.stateless_truncated_normal(
|
|
shape=[n], seed=seed_t, dtype=dtype)
|
|
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
|
|
random_test_util.test_truncated_normal(
|
|
self.assertEqual, self.assertAllClose, n, y,
|
|
variance_rtol=6e-3 if dtype == dtypes.bfloat16 else 1e-3)
|
|
|
|
|
|
class StatelessRandomOpsBenchmark(test.Benchmark):
|
|
"""Microbenchmarks for the stateless random ops."""
|
|
|
|
def _benchmarkUniform(self, name, dtype, use_xla_jit):
|
|
|
|
def BuilderFn():
|
|
shape = (10, 1000, 1000)
|
|
seed_var = variables.Variable((312, 456),
|
|
dtype=dtypes.int32,
|
|
name='input')
|
|
random_t = stateless.stateless_random_uniform(
|
|
shape, seed=seed_var, dtype=dtype)
|
|
return '%s.shape%s' % (name, shape), [random_t]
|
|
|
|
xla_test.Benchmark(self, BuilderFn, use_xla_jit=use_xla_jit, device='cpu')
|
|
|
|
def benchmarkUniformF32(self):
|
|
self._benchmarkUniform(
|
|
'uniform_f32', dtype=dtypes.float32, use_xla_jit=False)
|
|
|
|
def benchmarkUniformF64(self):
|
|
self._benchmarkUniform(
|
|
'uniform_f64', dtype=dtypes.float64, use_xla_jit=False)
|
|
|
|
def benchmarkUniformF32XLA(self):
|
|
self._benchmarkUniform(
|
|
'uniform_f32', dtype=dtypes.float32, use_xla_jit=True)
|
|
|
|
def benchmarkUniformF64XLA(self):
|
|
self._benchmarkUniform(
|
|
'uniform_f64', dtype=dtypes.float64, use_xla_jit=True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|