STT-tensorflow/tensorflow/compiler/tests/stateless_random_ops_test.py
Anudhyan Boral 21813af360 Modify the XLA Uniform sampler to use cast instead of bitcasts. We didn't strictly need a bitcast because we are ignoring the exponent bits anyway.
Before and after logic is equivalent. However, performance could have an impact.

PiperOrigin-RevId: 304057589
Change-Id: I2ad9e923b1c966f46eba91ae47e0e632b74cff72
2020-03-31 15:22:55 -07:00

171 lines
7.0 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for stateless random-number generation ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.compiler.tests import xla_test
from tensorflow.python.framework import dtypes
from tensorflow.python.kernel_tests.random import util as \
random_test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import stateless_random_ops as stateless
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
class StatelessRandomOpsTest(xla_test.XLATestCase):
"""Test cases for stateless random-number generator operators."""
def _random_types(self, include_int=False):
allowed_types = {dtypes.float64, dtypes.float32, dtypes.bfloat16}
if include_int:
allowed_types.update({dtypes.int32, dtypes.int64})
return self.all_tf_types & allowed_types
def testDeterminism(self):
# Stateless values should be equal iff the seeds are equal (roughly)
with self.session(), self.test_scope():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
seeds = [(x, y) for x in range(5) for y in range(5)] * 3 # pylint: disable=g-complex-comprehension
for stateless_op in [
stateless.stateless_random_uniform, stateless.stateless_random_normal
]:
for shape in (), (3,), (2, 5):
for dtype in self._random_types():
# Skip bfloat16. The result of bfloat16 is truncated from 32-bit
# result. With different seeds, the 32-bit results are different,
# but the truncated 16-bit results might be the same.
if dtype == dtypes.bfloat16:
continue
pure = stateless_op(shape, seed=seed_t, dtype=dtype)
values = [(seed, pure.eval(feed_dict={
seed_t: seed
})) for seed in seeds]
for s0, v0 in values:
for s1, v1 in values:
self.assertEqual(s0 == s1, np.all(v0 == v1))
def testRandomUniformIsInRange(self):
with self.session() as sess, self.test_scope():
for dtype in self._random_types(include_int=True):
maxval = 1
if dtype.is_integer:
maxval = 100
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
x = stateless.stateless_random_uniform(
shape=[1000], seed=seed_t, maxval=maxval, dtype=dtype)
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
self.assertTrue(np.all(y >= 0))
self.assertTrue(np.all(y < maxval))
def testDistributionOfStatelessRandomUniform(self):
"""Use Pearson's Chi-squared test to test for uniformity."""
with self.session() as sess, self.test_scope():
for dtype in self._random_types(include_int=True):
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
n = 1000
maxval = 1
if dtype.is_integer:
maxval = 100
x = stateless.stateless_random_uniform(
shape=[n], seed=seed_t, maxval=maxval, dtype=dtype)
y = sess.run(x, {seed_t: [565656, 121212]})
# Convert y to float and normalize its value to range [0, 1) when
# maxval != 1.
y = y.astype(float) / maxval
# Tests that the values are distributed amongst 10 bins with equal
# probability. 16.92 is the Chi^2 value for 9 degrees of freedom with
# p=0.05. This test is probabilistic and would be flaky if the random
# seed were not fixed.
self.assertLess(random_test_util.chi_squared(y, 10), 16.92)
def testRandomNormalIsFinite(self):
with self.session() as sess, self.test_scope():
for dtype in self._random_types():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
x = stateless.stateless_random_normal(
shape=[10000], seed=seed_t, dtype=dtype)
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
self.assertTrue(np.all(np.isfinite(y)))
def testDistributionOfStatelessRandomNormal(self):
"""Use Anderson-Darling test to test distribution appears normal."""
with self.session() as sess, self.test_scope():
for dtype in self._random_types():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
n = 1000
x = stateless.stateless_random_normal(
shape=[n], seed=seed_t, dtype=dtype)
y = sess.run(x, {seed_t: [25252, 314159]})
# The constant 2.492 is the 5% critical value for the Anderson-Darling
# test where the mean and variance are known. This test is probabilistic
# so to avoid flakiness the seed is fixed.
self.assertLess(
random_test_util.anderson_darling(y.astype(float)), 2.492)
def testTruncatedNormal(self):
for dtype in self._random_types():
with self.session() as sess, self.test_scope():
seed_t = array_ops.placeholder(dtypes.int32, shape=[2])
n = 10000000
x = stateless.stateless_truncated_normal(
shape=[n], seed=seed_t, dtype=dtype)
y = sess.run(x, {seed_t: [0x12345678, 0xabcdef1]})
random_test_util.test_truncated_normal(
self.assertEqual, self.assertAllClose, n, y,
variance_rtol=6e-3 if dtype == dtypes.bfloat16 else 1e-3)
class StatelessRandomOpsBenchmark(test.Benchmark):
"""Microbenchmarks for the stateless random ops."""
def _benchmarkUniform(self, name, dtype, use_xla_jit):
def BuilderFn():
shape = (10, 1000, 1000)
seed_var = variables.Variable((312, 456),
dtype=dtypes.int32,
name='input')
random_t = stateless.stateless_random_uniform(
shape, seed=seed_var, dtype=dtype)
return '%s.shape%s' % (name, shape), [random_t]
xla_test.Benchmark(self, BuilderFn, use_xla_jit=use_xla_jit, device='cpu')
def benchmarkUniformF32(self):
self._benchmarkUniform(
'uniform_f32', dtype=dtypes.float32, use_xla_jit=False)
def benchmarkUniformF64(self):
self._benchmarkUniform(
'uniform_f64', dtype=dtypes.float64, use_xla_jit=False)
def benchmarkUniformF32XLA(self):
self._benchmarkUniform(
'uniform_f32', dtype=dtypes.float32, use_xla_jit=True)
def benchmarkUniformF64XLA(self):
self._benchmarkUniform(
'uniform_f64', dtype=dtypes.float64, use_xla_jit=True)
if __name__ == '__main__':
test.main()