STT-tensorflow/tensorflow/compiler/tests/scan_ops_test.py
Sanjoy Das 6762ca15c4 Change all compiler tests to use self.session
The session returned by cached_session uses soft placement, something we don't
want for XLA_* devices.  With soft placement ops lacking XLA kernels silently
fall back and run on the CPU, misleading us into thinking we have more test
coverage than we actually do.  With this test some tests (rightly) start failing
because they were testing ops with dtypes the XLA kernels do not support.  I've
removed these dtypes from the tests.

This CL partially addresses b/132430685.  It stubs out "cached_session" and
"test_session" to raise errors, so we have more confidence that the compiler is
being exercised.  However, we still use XLA_* devices to exercise XLA, which has
a different code path than xla.compile and tpu.rewrite.  This needs to be
incrementally fixed.

PiperOrigin-RevId: 248437673
2019-05-15 17:32:14 -07:00

230 lines
7.5 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for scan ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.compiler.tests import xla_test
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
def numpy_reverse(x, axis):
length = len(x.shape)
if axis < 0:
axis = length + axis
ix = [
slice(None, None, -1) if i == axis else slice(None) for i in range(length)
]
return x[ix]
def handle_options(func, x, axis, exclusive, reverse):
"""Adds tf options to numpy scan ops."""
length = len(x.shape)
if axis < 0:
axis = length + axis
if reverse:
x = numpy_reverse(x, axis)
if exclusive:
ix_head = [slice(0, 1) if i == axis else slice(None) for i in range(length)]
ix_init = [
slice(0, -1) if i == axis else slice(None) for i in range(length)
]
if func == np.cumsum:
init = np.zeros_like(x[ix_head])
elif func == np.cumprod:
init = np.ones_like(x[ix_head])
else:
raise ValueError("Unknown scan function.")
x = np.concatenate([init, func(x[ix_init], axis)], axis=axis)
else:
x = func(x, axis=axis)
if reverse:
x = numpy_reverse(x, axis)
return x
class CumsumTest(xla_test.XLATestCase):
valid_dtypes = [np.float32, np.int32]
def axis_dtypes(self):
return set(self.int_types).intersection([np.int32, np.int64])
def _compare(self, x, axis, exclusive, reverse):
np_out = handle_options(np.cumsum, x, axis, exclusive, reverse)
with self.session(), self.test_scope():
p = array_ops.placeholder(x.dtype)
tf_out = math_ops.cumsum(p, axis, exclusive, reverse).eval(
feed_dict={p: x})
self.assertAllClose(np_out, tf_out)
def _compareAll(self, x, axis):
for exclusive in [True, False]:
for reverse in [True, False]:
self._compare(x, axis, exclusive, reverse)
def testEmpty(self):
for dtype in self.valid_dtypes:
x = np.zeros([0]).astype(dtype)
for axis in (-1, 0):
self._compareAll(x, axis)
def testAxisType(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 6).reshape([5]).astype(dtype)
for axis_dtype in self.axis_dtypes():
with self.session(), self.test_scope():
p = array_ops.placeholder(x.dtype)
axis = constant_op.constant(0, axis_dtype)
math_ops.cumsum(p, axis).eval(feed_dict={p: x})
def test1D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 6).reshape([5]).astype(dtype)
for axis in (-1, 0):
self._compareAll(x, axis)
def test2D(self):
for dtype in self.valid_dtypes:
x = np.arange(0, 10).reshape([2, 5]).astype(dtype)
for axis in (-2, -1, 0, 1):
self._compareAll(x, axis)
def test3D(self):
for dtype in self.valid_dtypes:
x = np.arange(0, 20).reshape([2, 2, 5]).astype(dtype)
for axis in (-3, -2, -1, 0, 1, 2):
self._compareAll(x, axis)
def test6D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 145).reshape([2, 2, 3, 3, 2, 2]).astype(dtype)
for axis in range(-6, 6, 3):
self._compareAll(x, axis)
def testInvalidAxis(self):
x = np.arange(0, 10).reshape([2, 5]).astype(np.float32)
with self.session(), self.test_scope():
input_tensor = ops.convert_to_tensor(x)
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
math_ops.cumsum(input_tensor, -3).eval()
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
math_ops.cumsum(input_tensor, 2).eval()
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "axis must be a scalar" in str(e)):
math_ops.cumsum(input_tensor, [0]).eval()
class CumprodTest(xla_test.XLATestCase):
valid_dtypes = [np.float32, np.int32]
def axis_dtypes(self):
return set(self.int_types).intersection([np.int32, np.int64])
def _compare(self, x, axis, exclusive, reverse):
np_out = handle_options(np.cumprod, x, axis, exclusive, reverse)
with self.session(), self.test_scope():
p = array_ops.placeholder(x.dtype)
prod = math_ops.cumprod(p, axis, exclusive, reverse)
tf_out = prod.eval(feed_dict={p: x})
self.assertAllClose(np_out, tf_out)
def _compareAll(self, x, axis):
for exclusive in [True, False]:
for reverse in [True, False]:
self._compare(x, axis, exclusive, reverse)
def testEmpty(self):
for dtype in self.valid_dtypes:
x = np.zeros([0]).astype(dtype)
for axis in (-1, 0):
self._compareAll(x, axis)
def testAxisType(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 6).reshape([5]).astype(dtype)
for axis_dtype in self.axis_dtypes():
with self.session(), self.test_scope():
p = array_ops.placeholder(x.dtype)
axis = constant_op.constant(0, axis_dtype)
math_ops.cumprod(x, axis).eval(feed_dict={p: x})
def test1D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 6).reshape([5]).astype(dtype)
for axis in (-1, 0):
self._compareAll(x, axis)
def test2D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 11).reshape([2, 5]).astype(dtype)
for axis in (-2, -1, 0, 1):
self._compareAll(x, axis)
def test3D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 21).reshape([2, 2, 5]).astype(dtype)
for axis in (-3, -2, -1, 0, 1, 2):
self._compareAll(x, axis)
def test6D(self):
for dtype in self.valid_dtypes:
x = np.arange(1, 145).reshape([2, 2, 3, 3, 2, 2]).astype(dtype)
for axis in range(-6, 6, 3):
self._compareAll(x, axis)
def testInvalidAxis(self):
x = np.arange(0, 10).reshape([2, 5]).astype(np.float32)
with self.session(), self.test_scope():
input_tensor = ops.convert_to_tensor(x)
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
math_ops.cumprod(input_tensor, -3).eval()
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "Expected scan axis in the range [-2, 2)" in str(e)):
math_ops.cumprod(input_tensor, 2).eval()
with self.assertRaisesWithPredicateMatch(
errors_impl.InvalidArgumentError,
lambda e: "axis must be a scalar" in str(e)):
math_ops.cumprod(input_tensor, [0]).eval()
if __name__ == "__main__":
test.main()