Please approve this CL. It will be submitted automatically, and its GitHub pull request will be marked as merged. Imported from GitHub PR #25011 New PR to continue the efforts started by @deven-amd in #20709 / #22669 / #24156. This PR aims to refactor StreamExecutor GPU interfaces so it can be shared among CUDA and ROCm. The PR would be the first part of a series of PRs. Based on @timshen91 's inputs, I've refactored logic in #214156 so : - only contains changes in stream_executor/.... - does not remove any stream_executor/cuda/*.h, so that things outside of stream_executor don't break. All the types and functions in the namespace cuda now alias to namespace gpu counterparts. For example, namespace cuda { using CUDADriver = gpu::GpuDriver; }. - all stream_executor/gpu/BUILD targets should be only visible to //third_party/tensorflow/stream_executor:__subpackages__. - target stream_executor/gpu:X should be only used by stream_executor/cuda:cuda_X or stream_executor/rocm:rocm_X, not cuda_Y. For example, cuda:cuda_platform should depend on cuda:cuda_driver, not gpu:gpu_driver. Copybara import of the project: - 267affbb73df9164baf4e62142fe7201e6a305ee [ROCm][CUDA] StreamExecutor logic for ROCm / CUDA platform by Wen-Heng (Jack) Chung <whchung@gmail.com> - 04fac5bf358059bdb2cd4a3e092e52dc982ea7b0 Merge 267affbb73df9164baf4e62142fe7201e6a305ee into 5f8ea... by Wen-Heng (Jack) Chung <whchung@gmail.com> COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/tensorflow/pull/25011 from ROCmSoftwarePlatform:google-upstream-pr-stream-executor-alt 267affbb73df9164baf4e62142fe7201e6a305ee PiperOrigin-RevId: 231250990
106 lines
4.3 KiB
C++
106 lines
4.3 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
// The CUDA implementation of the StreamExecutorInterface functionality.
|
|
// CUDA inclusions are ideally confined to this implementation file.
|
|
//
|
|
// The notions from the StreamExecutor basically correspond to the CUDA streams
|
|
// programming model provided by the libcuda.so driver APIs, so we don't have
|
|
// to do much more than wrap the calls to the libraries appropriately.
|
|
#ifndef TENSORFLOW_STREAM_EXECUTOR_GPU_GPU_KERNEL_H_
|
|
#define TENSORFLOW_STREAM_EXECUTOR_GPU_GPU_KERNEL_H_
|
|
|
|
#include "tensorflow/stream_executor/gpu/gpu_driver.h"
|
|
#include "tensorflow/stream_executor/kernel_cache_config.h"
|
|
#include "tensorflow/stream_executor/platform/logging.h"
|
|
#include "tensorflow/stream_executor/platform/port.h"
|
|
#include "tensorflow/stream_executor/stream_executor_internal.h"
|
|
|
|
namespace stream_executor {
|
|
namespace gpu {
|
|
|
|
// Wraps a GpuFunctionHandle to implement the platform-independent
|
|
// KernelInterface.
|
|
class GpuKernel : public internal::KernelInterface {
|
|
public:
|
|
GpuKernel()
|
|
: gpu_function_(nullptr),
|
|
arity_(0),
|
|
preferred_cache_config_(KernelCacheConfig::kNoPreference) {}
|
|
|
|
// Note that the function is unloaded when the module is unloaded, and the
|
|
// module that the function is contained in is owned by the GpuExecutor.
|
|
~GpuKernel() override {}
|
|
|
|
// As arity cannot be reflected upon using the CUDA API, the arity is
|
|
// explicitly set during the GpuExecutor::GetKernel initialization process.
|
|
void set_arity(unsigned arity) { arity_ = arity; }
|
|
unsigned Arity() const override { return arity_; }
|
|
|
|
// Returns the GpuFunctionHandle value for passing to the CUDA API.
|
|
GpuFunctionHandle AsGpuFunctionHandle() const {
|
|
DCHECK(gpu_function_ != nullptr);
|
|
return const_cast<GpuFunctionHandle>(gpu_function_);
|
|
}
|
|
|
|
// Returns the slot that the GpuFunctionHandle is stored within for this
|
|
// object, for the CUDA API which wants to load into a GpuFunctionHandle*.
|
|
GpuFunctionHandle* gpu_function_ptr() { return &gpu_function_; }
|
|
|
|
// CUDA supports setting the preferred cache configuration of a
|
|
// GpuFunctionHandle (more-or-less equivalent to a GpuKernel). We support this
|
|
// via the below functions; users can set a preference, and that is applied
|
|
// when the kernel is [lazy-]loaded (in GpuExecutor::Launch). The alternative
|
|
// would be to load the kernel & set the preference when the user calls the
|
|
// setter below; either approach is valid. Sets the current kernel cache
|
|
// configuration preference.
|
|
void SetPreferredCacheConfig(KernelCacheConfig config) override {
|
|
preferred_cache_config_ = config;
|
|
}
|
|
|
|
// Returns the current kernel cache configuration preference.
|
|
KernelCacheConfig GetPreferredCacheConfig() const override {
|
|
return preferred_cache_config_;
|
|
}
|
|
|
|
// Returns the current kernel cache configuration preference as a
|
|
// CUfunc_cache.
|
|
GpuFuncCachePreference GetGpuCacheConfig() const;
|
|
|
|
private:
|
|
GpuFunctionHandle gpu_function_; // Wrapped CUDA kernel handle.
|
|
unsigned arity_; // Number of formal parameters the kernel takes.
|
|
|
|
// Preferred (but not required) cache configuration for this kernel.
|
|
KernelCacheConfig preferred_cache_config_;
|
|
};
|
|
|
|
// Given a platform-independent kernel datatype, returns the (const) internal
|
|
// CUDA platform implementation pointer.
|
|
inline const GpuKernel* AsGpuKernel(const KernelBase* kernel) {
|
|
return static_cast<const GpuKernel*>(kernel->implementation());
|
|
}
|
|
|
|
// Given a platform-independent kernel datatype, returns the (non-const)
|
|
// internal CUDA platform implementation pointer.
|
|
inline GpuKernel* AsGpuKernel(KernelBase* kernel) {
|
|
return static_cast<GpuKernel*>(kernel->implementation());
|
|
}
|
|
|
|
} // namespace gpu
|
|
} // namespace stream_executor
|
|
|
|
#endif // TENSORFLOW_STREAM_EXECUTOR_GPU_GPU_KERNEL_H_
|