164 lines
5.7 KiB
Python
164 lines
5.7 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for local response normalization."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import copy
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import gradient_checker
|
|
from tensorflow.python.ops import gradients_impl
|
|
from tensorflow.python.ops import nn
|
|
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class LRNOpTest(test.TestCase):
|
|
|
|
def _LRN(self, input_image, lrn_depth_radius=5, bias=1.0, alpha=1.0,
|
|
beta=0.5):
|
|
"""Compute expected result."""
|
|
output = copy.deepcopy(input_image)
|
|
batch_size = input_image.shape[0]
|
|
rows = input_image.shape[1]
|
|
cols = input_image.shape[2]
|
|
depth = input_image.shape[3]
|
|
for b in range(batch_size):
|
|
for r in range(rows):
|
|
for c in range(cols):
|
|
for d in range(depth):
|
|
begin = max(0, d - lrn_depth_radius)
|
|
end = min(depth, d + lrn_depth_radius + 1)
|
|
patch = input_image[b, r, c, begin:end]
|
|
output[b, r, c, d] /= (
|
|
np.power(bias + alpha * np.sum(patch * patch), beta))
|
|
return output
|
|
|
|
def _RunAndVerify(self, dtype):
|
|
with self.cached_session(use_gpu=True):
|
|
# random shape
|
|
shape = np.random.randint(1, 16, size=4)
|
|
# Make depth at least 2 to make it meaningful
|
|
shape[3] += 1
|
|
p = array_ops.placeholder(dtype, shape=shape)
|
|
# random depth_radius, bias, alpha, beta. cuDNN requires depth_radius to
|
|
# be in [1, 7].
|
|
lrn_depth_radius = np.random.randint(1, min(8, shape[3]))
|
|
|
|
bias = 1.0 + np.random.rand()
|
|
alpha = 2.0 * np.random.rand()
|
|
# cuDNN requires beta >= 0.01.
|
|
beta = 0.01 + 2.0 * np.random.rand()
|
|
lrn_t = nn.local_response_normalization(
|
|
p,
|
|
name="lrn",
|
|
depth_radius=lrn_depth_radius,
|
|
bias=bias,
|
|
alpha=alpha,
|
|
beta=beta)
|
|
params = {p: np.random.rand(*shape).astype("f")}
|
|
result = lrn_t.eval(feed_dict=params)
|
|
expected = self._LRN(
|
|
params[p],
|
|
lrn_depth_radius=lrn_depth_radius,
|
|
bias=bias,
|
|
alpha=alpha,
|
|
beta=beta)
|
|
err = np.amax(np.abs(result - expected))
|
|
print("LRN error for bias ", bias, "alpha ", alpha, " beta ", beta, " is ",
|
|
err)
|
|
if dtype == dtypes.float32:
|
|
self.assertTrue(err < 1e-4)
|
|
else:
|
|
self.assertTrue(err < 1e-2)
|
|
self.assertShapeEqual(expected, lrn_t)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testCompute(self):
|
|
for _ in range(2):
|
|
self._RunAndVerify(dtypes.float32)
|
|
# Enable when LRN supports tf.float16 on GPU.
|
|
if not test.is_gpu_available():
|
|
self._RunAndVerify(dtypes.float16)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradientsZeroInput(self):
|
|
with self.session(use_gpu=True):
|
|
shape = [4, 4, 4, 4]
|
|
p = array_ops.placeholder(dtypes.float32, shape=shape)
|
|
inp_array = np.zeros(shape).astype("f")
|
|
lrn_op = nn.local_response_normalization(p, 2, 1.0, 0.0, 1.0, name="lrn")
|
|
grad = gradients_impl.gradients([lrn_op], [p])[0]
|
|
params = {p: inp_array}
|
|
r = grad.eval(feed_dict=params)
|
|
expected = np.ones(shape).astype("f")
|
|
self.assertAllClose(r, expected)
|
|
self.assertShapeEqual(expected, grad)
|
|
|
|
def _RunAndVerifyGradients(self, dtype):
|
|
with self.cached_session(use_gpu=True):
|
|
# random shape
|
|
shape = np.random.randint(1, 5, size=4)
|
|
# Make depth at least 2 to make it meaningful
|
|
shape[3] += 1
|
|
# random depth_radius, bias, alpha, beta. cuDNN requires depth_radius to
|
|
# be in [1, 7].
|
|
lrn_depth_radius = np.random.randint(1, min(8, shape[3]))
|
|
bias = 1.0 + np.random.rand()
|
|
alpha = 1.0 * np.random.rand()
|
|
# cuDNN requires beta >= 0.01.
|
|
beta = 0.01 + 1.0 * np.random.rand()
|
|
if dtype == dtypes.float32:
|
|
inp_array = np.random.rand(*shape).astype(np.float32)
|
|
else:
|
|
inp_array = np.random.rand(*shape).astype(np.float16)
|
|
|
|
inp = constant_op.constant(
|
|
list(inp_array.ravel(order="C")), shape=shape, dtype=dtype)
|
|
lrn_op = nn.local_response_normalization(
|
|
inp,
|
|
name="lrn",
|
|
depth_radius=lrn_depth_radius,
|
|
bias=bias,
|
|
alpha=alpha,
|
|
beta=beta)
|
|
err = gradient_checker.compute_gradient_error(inp, shape, lrn_op, shape)
|
|
print("LRN Gradient error for bias ", bias, "alpha ", alpha, " beta ", beta,
|
|
" is ", err)
|
|
if dtype == dtypes.float32:
|
|
self.assertLess(err, 1e-4)
|
|
else:
|
|
self.assertLess(err, 1.0)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradients(self):
|
|
for _ in range(2):
|
|
self._RunAndVerifyGradients(dtypes.float32)
|
|
# Enable when LRN supports tf.float16 on GPU.
|
|
if not test.is_gpu_available():
|
|
self._RunAndVerifyGradients(dtypes.float16)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|