106 lines
3.4 KiB
Python
106 lines
3.4 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Demo of the tfdbg curses UI: A TF network computing Fibonacci sequence."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import argparse
|
|
import sys
|
|
|
|
import numpy as np
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
import tensorflow
|
|
|
|
from tensorflow.python import debug as tf_debug
|
|
|
|
tf = tensorflow.compat.v1
|
|
|
|
FLAGS = None
|
|
|
|
|
|
def main(_):
|
|
sess = tf.Session()
|
|
|
|
# Construct the TensorFlow network.
|
|
n0 = tf.Variable(
|
|
np.ones([FLAGS.tensor_size] * 2), dtype=tf.int32, name="node_00")
|
|
n1 = tf.Variable(
|
|
np.ones([FLAGS.tensor_size] * 2), dtype=tf.int32, name="node_01")
|
|
|
|
for i in xrange(2, FLAGS.length):
|
|
n0, n1 = n1, tf.add(n0, n1, name="node_%.2d" % i)
|
|
|
|
sess.run(tf.global_variables_initializer())
|
|
|
|
# Wrap the TensorFlow Session object for debugging.
|
|
if FLAGS.debug and FLAGS.tensorboard_debug_address:
|
|
raise ValueError(
|
|
"The --debug and --tensorboard_debug_address flags are mutually "
|
|
"exclusive.")
|
|
if FLAGS.debug:
|
|
sess = tf_debug.LocalCLIDebugWrapperSession(sess)
|
|
|
|
def has_negative(_, tensor):
|
|
return np.any(tensor < 0)
|
|
|
|
sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
|
|
sess.add_tensor_filter("has_negative", has_negative)
|
|
elif FLAGS.tensorboard_debug_address:
|
|
sess = tf_debug.TensorBoardDebugWrapperSession(
|
|
sess, FLAGS.tensorboard_debug_address)
|
|
|
|
print("Fibonacci number at position %d:\n%s" % (FLAGS.length, sess.run(n1)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.register("type", "bool", lambda v: v.lower() == "true")
|
|
parser.add_argument(
|
|
"--tensor_size",
|
|
type=int,
|
|
default=1,
|
|
help="""\
|
|
Size of tensor. E.g., if the value is 30, the tensors will have shape
|
|
[30, 30].\
|
|
""")
|
|
parser.add_argument(
|
|
"--length",
|
|
type=int,
|
|
default=20,
|
|
help="Length of the fibonacci sequence to compute.")
|
|
parser.add_argument(
|
|
"--ui_type",
|
|
type=str,
|
|
default="curses",
|
|
help="Command-line user interface type (curses | readline)")
|
|
parser.add_argument(
|
|
"--debug",
|
|
dest="debug",
|
|
action="store_true",
|
|
help="Use TensorFlow Debugger (tfdbg). Mutually exclusive with the "
|
|
"--tensorboard_debug_address flag.")
|
|
parser.add_argument(
|
|
"--tensorboard_debug_address",
|
|
type=str,
|
|
default=None,
|
|
help="Connect to the TensorBoard Debugger Plugin backend specified by "
|
|
"the gRPC address (e.g., localhost:1234). Mutually exclusive with the "
|
|
"--debug flag.")
|
|
|
|
FLAGS, unparsed = parser.parse_known_args()
|
|
with tf.Graph().as_default():
|
|
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
|