STT-tensorflow/tensorflow/lite/testing/kernel_test/diff_analyzer.cc
Yunlu Li d5fb65ff33 Op level diff test.
PiperOrigin-RevId: 233089842
2019-02-08 11:30:59 -08:00

116 lines
3.4 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/testing/kernel_test/diff_analyzer.h"
#include <cmath>
#include <fstream>
#include "tensorflow/lite/testing/split.h"
namespace tflite {
namespace testing {
namespace {
float CalculateNormalizedMaxDiff(const std::vector<float>& base,
const std::vector<float>& test) {
float diff = 0;
// For numerical stability in case the tensor is all 0.
float base_max = 1e-6;
for (int i = 0; i < base.size(); i++) {
diff = std::max(diff, std::abs(base[i] - test[i]));
base_max = std::max(base_max, base[i]);
}
return diff / base_max;
}
float CalculateNormalizedL2Norm(const std::vector<float>& base,
const std::vector<float>& test) {
float l2_error = 0;
// For numerical stability in case the tensor is all 0.
float base_max = 1e-6;
for (int i = 0; i < base.size(); i++) {
float diff = base[i] - test[i];
l2_error += diff * diff;
base_max = std::max(base_max, base[i]);
}
l2_error /= base.size();
return std::sqrt(l2_error) / base_max;
}
TfLiteStatus Populate(const string& filename,
std::vector<std::vector<float>>* tensors) {
if (filename.empty()) {
fprintf(stderr, "Empty input file name.");
return kTfLiteError;
}
std::ifstream file(filename);
string content;
while (std::getline(file, content, '\n')) {
tensors->push_back(Split<float>(content, ","));
}
file.close();
return kTfLiteOk;
}
} // namespace
TfLiteStatus DiffAnalyzer::ReadFiles(const string& base, const string& test) {
TF_LITE_ENSURE_STATUS(Populate(base, &base_tensors_));
TF_LITE_ENSURE_STATUS(Populate(test, &test_tensors_));
if (base_tensors_.size() != test_tensors_.size()) {
fprintf(stderr, "Golden and test tensor dimensions don't match.");
return kTfLiteError;
}
return kTfLiteOk;
}
TfLiteStatus DiffAnalyzer::WriteReport(const string& filename) {
if (filename.empty()) {
fprintf(stderr, "Empty output file name.");
return kTfLiteError;
}
std::ofstream output_file;
output_file.open(filename, std::fstream::out | std::fstream::trunc);
if (!output_file) {
fprintf(stderr, "Failed to open output file %s.", filename.c_str());
return kTfLiteError;
}
output_file << "Normalized L2 Error"
<< ","
<< "Normalized Max Diff"
<< "\n";
for (int i = 0; i < base_tensors_.size(); i++) {
float l2_error =
CalculateNormalizedL2Norm(base_tensors_[i], test_tensors_[i]);
float max_diff =
CalculateNormalizedMaxDiff(base_tensors_[i], test_tensors_[i]);
output_file << l2_error << "," << max_diff << "\n";
}
output_file.close();
return kTfLiteOk;
}
} // namespace testing
} // namespace tflite