452 lines
18 KiB
C++
452 lines
18 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/kernels/internal/reference/conv.h"
|
|
|
|
#include "cmsis/CMSIS/NN/Include/arm_nn_types.h"
|
|
#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h"
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/common.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/integer_ops/conv.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/padding.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace conv {
|
|
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kFilterTensor = 1;
|
|
constexpr int kBiasTensor = 2;
|
|
constexpr int kOutputTensor = 0;
|
|
constexpr int kMaxChannels = 256;
|
|
|
|
// Conv is quantized along dimension 0:
|
|
// https://www.tensorflow.org/lite/performance/quantization_spec
|
|
constexpr int kConvQuantizedDimension = 0;
|
|
|
|
struct OpData {
|
|
TfLitePaddingValues padding;
|
|
// The scaling factor from input to output (aka the 'real multiplier') can
|
|
// be represented as a fixed point multiplier plus a left shift.
|
|
int32_t output_multiplier;
|
|
int output_shift;
|
|
|
|
// Per channel output multiplier and shift.
|
|
// TODO(b/141139247): Allocate these dynamically when possible.
|
|
int32_t per_channel_output_multiplier[kMaxChannels];
|
|
int32_t per_channel_output_shift[kMaxChannels];
|
|
|
|
// The range of the fused activation layer. For example for kNone and
|
|
// uint8_t these would be 0 and 255.
|
|
int32_t output_activation_min;
|
|
int32_t output_activation_max;
|
|
};
|
|
|
|
inline PaddingType RuntimePaddingType(TfLitePadding padding) {
|
|
switch (padding) {
|
|
case TfLitePadding::kTfLitePaddingSame:
|
|
return PaddingType::kSame;
|
|
case TfLitePadding::kTfLitePaddingValid:
|
|
return PaddingType::kValid;
|
|
case TfLitePadding::kTfLitePaddingUnknown:
|
|
default:
|
|
return PaddingType::kNone;
|
|
}
|
|
}
|
|
|
|
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
|
TfLiteConvParams* params, int width, int height,
|
|
int filter_width, int filter_height, int out_width,
|
|
int out_height, const TfLiteType data_type,
|
|
OpData* data) {
|
|
bool has_bias = node->inputs->size == 3;
|
|
// Check number of inputs/outputs
|
|
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
|
|
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
|
|
|
|
// Matching GetWindowedOutputSize in TensorFlow.
|
|
auto padding = params->padding;
|
|
data->padding = ComputePaddingHeightWidth(
|
|
params->stride_height, params->stride_width,
|
|
params->dilation_height_factor, params->dilation_width_factor, height,
|
|
width, filter_height, filter_width, padding, &out_height, &out_width);
|
|
|
|
// Note that quantized inference requires that all tensors have their
|
|
// parameters set. This is usually done during quantized training.
|
|
if (data_type != kTfLiteFloat32) {
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
|
const TfLiteTensor* bias =
|
|
GetOptionalInputTensor(context, node, kBiasTensor);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
int num_channels = filter->dims->data[kConvQuantizedDimension];
|
|
|
|
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
|
|
context, input, filter, bias, output, params->activation,
|
|
&data->output_multiplier, &data->output_shift,
|
|
&data->output_activation_min, &data->output_activation_max,
|
|
data->per_channel_output_multiplier,
|
|
reinterpret_cast<int*>(data->per_channel_output_shift), num_channels));
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
void* raw;
|
|
context->AllocatePersistentBuffer(context, sizeof(int), &raw);
|
|
return raw;
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
#if defined(__ARM_FEATURE_DSP) || defined(__ARM_FEATURE_MVE)
|
|
OpData data;
|
|
int32_t buf_size = 0;
|
|
|
|
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
|
const TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
RuntimeShape input_shape = GetTensorShape(input);
|
|
RuntimeShape output_shape = GetTensorShape(output);
|
|
|
|
// Initialize cmsis-nn input dimensions
|
|
cmsis_nn_dims input_dims;
|
|
input_dims.n = MatchingDim(input_shape, 0, output_shape, 0);
|
|
input_dims.h = input->dims->data[1];
|
|
input_dims.w = input->dims->data[2];
|
|
input_dims.c = input_shape.Dims(3);
|
|
|
|
// Initialize cmsis-nn filter dimensions
|
|
cmsis_nn_dims filter_dims;
|
|
filter_dims.n = output_shape.Dims(3);
|
|
filter_dims.h = filter->dims->data[1];
|
|
filter_dims.w = filter->dims->data[2];
|
|
filter_dims.c = input_dims.c;
|
|
|
|
// Initialize cmsis-nn output dimensions
|
|
cmsis_nn_dims output_dims;
|
|
output_dims.n = input_dims.n;
|
|
output_dims.h = output->dims->data[1];
|
|
output_dims.w = output->dims->data[2];
|
|
output_dims.c = output_shape.Dims(3);
|
|
|
|
int* buffer_idx = reinterpret_cast<int*>(node->user_data);
|
|
|
|
TF_LITE_ENSURE_STATUS(CalculateOpData(
|
|
context, node, params, input_dims.w, input_dims.h, filter_dims.w,
|
|
filter_dims.h, output_dims.w, output_dims.h, input->type, &data));
|
|
|
|
if (input->type == kTfLiteInt8) {
|
|
// Initialize cmsis-nn convolution parameters
|
|
cmsis_nn_conv_params conv_params;
|
|
conv_params.input_offset = -input->params.zero_point;
|
|
conv_params.output_offset = output->params.zero_point;
|
|
conv_params.stride.h = params->stride_height;
|
|
conv_params.stride.w = params->stride_width;
|
|
conv_params.dilation.h = params->dilation_height_factor;
|
|
conv_params.dilation.w = params->dilation_width_factor;
|
|
conv_params.padding.h = data.padding.height;
|
|
conv_params.padding.w = data.padding.width;
|
|
conv_params.activation.min = data.output_activation_min;
|
|
conv_params.activation.max = data.output_activation_max;
|
|
|
|
buf_size = arm_convolve_wrapper_s8_get_buffer_size(
|
|
&conv_params, &input_dims, &filter_dims, &output_dims);
|
|
}
|
|
|
|
node->user_data = buffer_idx;
|
|
if (buf_size > 0) {
|
|
TF_LITE_ENSURE_STATUS(
|
|
context->RequestScratchBufferInArena(context, buf_size, buffer_idx));
|
|
} else {
|
|
*buffer_idx = -1;
|
|
}
|
|
#endif
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
|
TfLiteConvParams* params, OpData* data,
|
|
const TfLiteTensor* input,
|
|
const TfLiteTensor* filter, const TfLiteTensor* bias,
|
|
TfLiteTensor* im2col, TfLiteTensor* hwcn_weights,
|
|
TfLiteTensor* output) {
|
|
const int32_t input_offset = -input->params.zero_point;
|
|
const int32_t filter_offset = -filter->params.zero_point;
|
|
const int32_t output_offset = output->params.zero_point;
|
|
|
|
ConvParams op_params;
|
|
op_params.padding_type = RuntimePaddingType(params->padding);
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.dilation_width_factor = params->dilation_width_factor;
|
|
op_params.dilation_height_factor = params->dilation_height_factor;
|
|
op_params.input_offset = input_offset;
|
|
op_params.weights_offset = filter_offset;
|
|
op_params.output_offset = output_offset;
|
|
op_params.output_multiplier = data->output_multiplier;
|
|
op_params.output_shift = -data->output_shift;
|
|
op_params.quantized_activation_min = data->output_activation_min;
|
|
op_params.quantized_activation_max = data->output_activation_max;
|
|
reference_ops::Conv(op_params, GetTensorShape(input),
|
|
GetTensorData<uint8_t>(input), GetTensorShape(filter),
|
|
GetTensorData<uint8_t>(filter), GetTensorShape(bias),
|
|
GetTensorData<int32_t>(bias), GetTensorShape(output),
|
|
GetTensorData<uint8_t>(output), GetTensorShape(im2col),
|
|
GetTensorData<uint8_t>(im2col), nullptr);
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus EvalQuantizedPerChannel(
|
|
TfLiteContext* context, TfLiteNode* node, TfLiteConvParams* params,
|
|
OpData* data, const TfLiteTensor* input, const TfLiteTensor* filter,
|
|
const TfLiteTensor* bias, TfLiteTensor* output, TfLiteTensor* im2col) {
|
|
// Initialize cmsis-nn convolution parameters
|
|
cmsis_nn_conv_params conv_params;
|
|
conv_params.input_offset = -input->params.zero_point;
|
|
conv_params.output_offset = output->params.zero_point;
|
|
conv_params.stride.h = params->stride_height;
|
|
conv_params.stride.w = params->stride_width;
|
|
conv_params.dilation.h = params->dilation_height_factor;
|
|
conv_params.dilation.w = params->dilation_width_factor;
|
|
conv_params.padding.h = data->padding.height;
|
|
conv_params.padding.w = data->padding.width;
|
|
conv_params.activation.min = data->output_activation_min;
|
|
conv_params.activation.max = data->output_activation_max;
|
|
|
|
// Initialize cmsis-nn per channel quantization parameters
|
|
cmsis_nn_per_channel_quant_params quant_params;
|
|
quant_params.multiplier = data->per_channel_output_multiplier;
|
|
quant_params.shift = data->per_channel_output_shift;
|
|
|
|
#if defined(__ARM_FEATURE_DSP) || defined(__ARM_FEATURE_MVE)
|
|
RuntimeShape filter_shape = GetTensorShape(filter);
|
|
RuntimeShape input_shape = GetTensorShape(input);
|
|
RuntimeShape output_shape = GetTensorShape(output);
|
|
RuntimeShape bias_shape = GetTensorShape(bias);
|
|
|
|
// Sanity check.
|
|
TFLITE_DCHECK_LE(conv_params.activation.min, conv_params.activation.max);
|
|
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
|
const int batch_size = MatchingDim(input_shape, 0, output_shape, 0);
|
|
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
|
|
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
|
|
if (GetTensorData<int8_t>(bias)) {
|
|
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
|
|
}
|
|
|
|
// Initialize cmsis-nn dimensions
|
|
// Input
|
|
cmsis_nn_dims input_dims;
|
|
input_dims.n = batch_size;
|
|
input_dims.h = input_shape.Dims(1);
|
|
input_dims.w = input_shape.Dims(2);
|
|
input_dims.c = input_depth;
|
|
|
|
// Filter
|
|
cmsis_nn_dims filter_dims;
|
|
filter_dims.n = output_depth;
|
|
filter_dims.h = filter_shape.Dims(1);
|
|
filter_dims.w = filter_shape.Dims(2);
|
|
filter_dims.c = input_depth;
|
|
|
|
// Bias
|
|
cmsis_nn_dims bias_dims;
|
|
bias_dims.n = 1;
|
|
bias_dims.h = 1;
|
|
bias_dims.w = 1;
|
|
bias_dims.c = output_depth;
|
|
|
|
// Output
|
|
cmsis_nn_dims output_dims;
|
|
output_dims.n = batch_size;
|
|
output_dims.h = output_shape.Dims(1);
|
|
output_dims.w = output_shape.Dims(2);
|
|
output_dims.c = output_depth;
|
|
|
|
// Initialize cmsis-nn context
|
|
cmsis_nn_context ctx;
|
|
ctx.buf = nullptr;
|
|
ctx.size = 0;
|
|
|
|
auto* buffer_idx = reinterpret_cast<int*>(node->user_data);
|
|
if (*buffer_idx > -1) {
|
|
ctx.buf = context->GetScratchBuffer(context, *buffer_idx);
|
|
// Note: ctx.size is currently not used in cmsis-nn.
|
|
// The buffer should be allocated in the Prepare function through
|
|
// arm_convolve_wrapper_s8_get_buffer_size
|
|
}
|
|
|
|
// arm_convolve_wrapper_s8 dispatches the optimized kernel accordingly with
|
|
// the parameters passed
|
|
arm_status status = arm_convolve_wrapper_s8(
|
|
&ctx, &conv_params, &quant_params, &input_dims,
|
|
GetTensorData<int8_t>(input), &filter_dims, GetTensorData<int8_t>(filter),
|
|
&bias_dims, GetTensorData<int32>(bias), &output_dims,
|
|
GetTensorData<int8_t>(output));
|
|
|
|
if (status == ARM_MATH_SUCCESS) {
|
|
return kTfLiteOk;
|
|
} else {
|
|
return kTfLiteError;
|
|
}
|
|
|
|
#else
|
|
#pragma message( \
|
|
"CMSIS-NN optimization for conv not available for this target. Using reference kernel.")
|
|
|
|
ConvParams op_params;
|
|
op_params.input_offset = -input->params.zero_point;
|
|
op_params.output_offset = output->params.zero_point;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.dilation_height_factor = params->dilation_height_factor;
|
|
op_params.dilation_width_factor = params->dilation_width_factor;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.quantized_activation_min = data->output_activation_min;
|
|
op_params.quantized_activation_max = data->output_activation_max;
|
|
|
|
reference_integer_ops::ConvPerChannel(
|
|
op_params, data->per_channel_output_multiplier,
|
|
data->per_channel_output_shift, GetTensorShape(input),
|
|
GetTensorData<int8>(input), GetTensorShape(filter),
|
|
GetTensorData<int8>(filter), GetTensorShape(bias),
|
|
GetTensorData<int32>(bias), GetTensorShape(output),
|
|
GetTensorData<int8>(output));
|
|
|
|
#endif
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node,
|
|
TfLiteConvParams* params, OpData* data,
|
|
const TfLiteTensor* input, const TfLiteTensor* filter,
|
|
const TfLiteTensor* bias, TfLiteTensor* im2col,
|
|
TfLiteTensor* hwcn_weights, TfLiteTensor* output) {
|
|
float output_activation_min, output_activation_max;
|
|
CalculateActivationRange(params->activation, &output_activation_min,
|
|
&output_activation_max);
|
|
|
|
ConvParams op_params;
|
|
op_params.padding_type = RuntimePaddingType(params->padding);
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.dilation_width_factor = params->dilation_width_factor;
|
|
op_params.dilation_height_factor = params->dilation_height_factor;
|
|
op_params.float_activation_min = output_activation_min;
|
|
op_params.float_activation_max = output_activation_max;
|
|
|
|
reference_ops::Conv(op_params, GetTensorShape(input),
|
|
GetTensorData<float>(input), GetTensorShape(filter),
|
|
GetTensorData<float>(filter), GetTensorShape(bias),
|
|
GetTensorData<float>(bias), GetTensorShape(output),
|
|
GetTensorData<float>(output), GetTensorShape(im2col),
|
|
GetTensorData<float>(im2col));
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params = reinterpret_cast<TfLiteConvParams*>(node->builtin_data);
|
|
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
|
const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor);
|
|
|
|
int input_width = input->dims->data[2];
|
|
int input_height = input->dims->data[1];
|
|
int filter_width = filter->dims->data[2];
|
|
int filter_height = filter->dims->data[1];
|
|
int output_width = output->dims->data[2];
|
|
int output_height = output->dims->data[1];
|
|
|
|
OpData data;
|
|
|
|
// All per-channel quantized tensors need valid zero point and scale arrays.
|
|
if (input->type == kTfLiteInt8) {
|
|
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
|
kTfLiteAffineQuantization);
|
|
|
|
const auto* affine_quantization =
|
|
reinterpret_cast<TfLiteAffineQuantization*>(
|
|
filter->quantization.params);
|
|
TF_LITE_ENSURE(context, affine_quantization);
|
|
TF_LITE_ENSURE(context, affine_quantization->scale);
|
|
TF_LITE_ENSURE(context, affine_quantization->zero_point);
|
|
TF_LITE_ENSURE(context,
|
|
affine_quantization->scale->size == 1 ||
|
|
affine_quantization->scale->size ==
|
|
filter->dims->data[kConvQuantizedDimension]);
|
|
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
|
|
affine_quantization->zero_point->size);
|
|
}
|
|
|
|
TF_LITE_ENSURE_STATUS(CalculateOpData(
|
|
context, node, params, input_width, input_height, filter_width,
|
|
filter_height, output_width, output_height, input->type, &data));
|
|
|
|
switch (input->type) { // Already know in/out types are same.
|
|
case kTfLiteFloat32:
|
|
return EvalFloat(context, node, params, &data, input, filter, bias,
|
|
nullptr, nullptr, output);
|
|
break;
|
|
case kTfLiteInt8:
|
|
return EvalQuantizedPerChannel(context, node, params, &data, input,
|
|
filter, bias, output, nullptr);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
return EvalQuantized(context, node, params, &data, input, filter, bias,
|
|
nullptr, nullptr, output);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
|
TfLiteTypeGetName(input->type), input->type);
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace conv
|
|
|
|
TfLiteRegistration* Register_CONV_2D() {
|
|
static TfLiteRegistration r = {/*init=*/conv::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/conv::Prepare,
|
|
/*invoke=*/conv::Eval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|