STT-tensorflow/tensorflow/lite/kernels/unidirectional_sequence_rnn_test.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

457 lines
19 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Unit test for TFLite Sequential RNN op.
#include <initializer_list>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
static float rnn_input[] = {
0.23689353, 0.285385, 0.037029743, -0.19858193, -0.27569133,
0.43773448, 0.60379338, 0.35562468, -0.69424844, -0.93421471,
-0.87287879, 0.37144363, -0.62476718, 0.23791671, 0.40060222,
0.1356622, -0.99774903, -0.98858172, -0.38952237, -0.47685933,
0.31073618, 0.71511042, -0.63767755, -0.31729108, 0.33468103,
0.75801885, 0.30660987, -0.37354088, 0.77002847, -0.62747043,
-0.68572164, 0.0069220066, 0.65791464, 0.35130811, 0.80834007,
-0.61777675, -0.21095741, 0.41213346, 0.73784804, 0.094794154,
0.47791874, 0.86496925, -0.53376222, 0.85315156, 0.10288584,
0.86684, -0.011186242, 0.10513687, 0.87825835, 0.59929144,
0.62827742, 0.18899453, 0.31440187, 0.99059987, 0.87170351,
-0.35091716, 0.74861872, 0.17831337, 0.2755419, 0.51864719,
0.55084288, 0.58982027, -0.47443086, 0.20875752, -0.058871567,
-0.66609079, 0.59098077, 0.73017097, 0.74604273, 0.32882881,
-0.17503482, 0.22396147, 0.19379807, 0.29120302, 0.077113032,
-0.70331609, 0.15804303, -0.93407321, 0.40182066, 0.036301374,
0.66521823, 0.0300982, -0.7747041, -0.02038002, 0.020698071,
-0.90300065, 0.62870288, -0.23068321, 0.27531278, -0.095755219,
-0.712036, -0.17384434, -0.50593495, -0.18646687, -0.96508682,
0.43519354, 0.14744234, 0.62589407, 0.1653645, -0.10651493,
-0.045277178, 0.99032974, -0.88255352, -0.85147917, 0.28153265,
0.19455957, -0.55479527, -0.56042433, 0.26048636, 0.84702539,
0.47587705, -0.074295521, -0.12287641, 0.70117295, 0.90532446,
0.89782166, 0.79817224, 0.53402734, -0.33286154, 0.073485017,
-0.56172788, -0.044897556, 0.89964068, -0.067662835, 0.76863563,
0.93455386, -0.6324693, -0.083922029};
static float rnn_golden_output[] = {
0.496726, 0, 0.965996, 0, 0.0584254, 0,
0, 0.12315, 0, 0, 0.612266, 0.456601,
0, 0.52286, 1.16099, 0.0291232,
0, 0, 0.524901, 0, 0, 0,
0, 1.02116, 0, 1.35762, 0, 0.356909,
0.436415, 0.0355727, 0, 0,
0, 0, 0, 0.262335, 0, 0,
0, 1.33992, 0, 2.9739, 0, 0,
1.31914, 2.66147, 0, 0,
0.942568, 0, 0, 0, 0.025507, 0,
0, 0, 0.321429, 0.569141, 1.25274, 1.57719,
0.8158, 1.21805, 0.586239, 0.25427,
1.04436, 0, 0.630725, 0, 0.133801, 0.210693,
0.363026, 0, 0.533426, 0, 1.25926, 0.722707,
0, 1.22031, 1.30117, 0.495867,
0.222187, 0, 0.72725, 0, 0.767003, 0,
0, 0.147835, 0, 0, 0, 0.608758,
0.469394, 0.00720298, 0.927537, 0,
0.856974, 0.424257, 0, 0, 0.937329, 0,
0, 0, 0.476425, 0, 0.566017, 0.418462,
0.141911, 0.996214, 1.13063, 0,
0.967899, 0, 0, 0, 0.0831304, 0,
0, 1.00378, 0, 0, 0, 1.44818,
1.01768, 0.943891, 0.502745, 0,
0.940135, 0, 0, 0, 0, 0,
0, 2.13243, 0, 0.71208, 0.123918, 1.53907,
1.30225, 1.59644, 0.70222, 0,
0.804329, 0, 0.430576, 0, 0.505872, 0.509603,
0.343448, 0, 0.107756, 0.614544, 1.44549, 1.52311,
0.0454298, 0.300267, 0.562784, 0.395095,
0.228154, 0, 0.675323, 0, 1.70536, 0.766217,
0, 0, 0, 0.735363, 0.0759267, 1.91017,
0.941888, 0, 0, 0,
0, 0, 1.5909, 0, 0, 0,
0, 0.5755, 0, 0.184687, 0, 1.56296,
0.625285, 0, 0, 0,
0, 0, 0.0857888, 0, 0, 0,
0, 0.488383, 0.252786, 0, 0, 0,
1.02817, 1.85665, 0, 0,
0.00981836, 0, 1.06371, 0, 0, 0,
0, 0, 0, 0.290445, 0.316406, 0,
0.304161, 1.25079, 0.0707152, 0,
0.986264, 0.309201, 0, 0, 0, 0,
0, 1.64896, 0.346248, 0, 0.918175, 0.78884,
0.524981, 1.92076, 2.07013, 0.333244,
0.415153, 0.210318, 0, 0, 0, 0,
0, 2.02616, 0, 0.728256, 0.84183, 0.0907453,
0.628881, 3.58099, 1.49974, 0};
static std::initializer_list<float> rnn_weights = {
0.461459, 0.153381, 0.529743, -0.00371218, 0.676267, -0.211346,
0.317493, 0.969689, -0.343251, 0.186423, 0.398151, 0.152399,
0.448504, 0.317662, 0.523556, -0.323514, 0.480877, 0.333113,
-0.757714, -0.674487, -0.643585, 0.217766, -0.0251462, 0.79512,
-0.595574, -0.422444, 0.371572, -0.452178, -0.556069, -0.482188,
-0.685456, -0.727851, 0.841829, 0.551535, -0.232336, 0.729158,
-0.00294906, -0.69754, 0.766073, -0.178424, 0.369513, -0.423241,
0.548547, -0.0152023, -0.757482, -0.85491, 0.251331, -0.989183,
0.306261, -0.340716, 0.886103, -0.0726757, -0.723523, -0.784303,
0.0354295, 0.566564, -0.485469, -0.620498, 0.832546, 0.697884,
-0.279115, 0.294415, -0.584313, 0.548772, 0.0648819, 0.968726,
0.723834, -0.0080452, -0.350386, -0.272803, 0.115121, -0.412644,
-0.824713, -0.992843, -0.592904, -0.417893, 0.863791, -0.423461,
-0.147601, -0.770664, -0.479006, 0.654782, 0.587314, -0.639158,
0.816969, -0.337228, 0.659878, 0.73107, 0.754768, -0.337042,
0.0960841, 0.368357, 0.244191, -0.817703, -0.211223, 0.442012,
0.37225, -0.623598, -0.405423, 0.455101, 0.673656, -0.145345,
-0.511346, -0.901675, -0.81252, -0.127006, 0.809865, -0.721884,
0.636255, 0.868989, -0.347973, -0.10179, -0.777449, 0.917274,
0.819286, 0.206218, -0.00785118, 0.167141, 0.45872, 0.972934,
-0.276798, 0.837861, 0.747958, -0.0151566, -0.330057, -0.469077,
0.277308, 0.415818};
static std::initializer_list<float> rnn_recurrent_weights = {
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.1};
static std::initializer_list<float> rnn_bias = {
0.065691948, -0.69055247, 0.1107955, -0.97084129, -0.23957068, -0.23566568,
-0.389184, 0.47481549, -0.4791103, 0.29931796, 0.10463274, 0.83918178,
0.37197268, 0.61957061, 0.3956964, -0.37609905};
class UnidirectionalRNNOpModel : public SingleOpModel {
public:
UnidirectionalRNNOpModel(
int batches, int sequence_len, int units, int size, bool time_major,
const TensorType& weights = TensorType_FLOAT32,
const TensorType& recurrent_weights = TensorType_FLOAT32,
bool asymmetric_quantize_inputs = false)
: batches_(batches),
sequence_len_(sequence_len),
units_(units),
input_size_(size) {
input_ = AddInput(TensorType_FLOAT32);
weights_ = AddInput(weights);
recurrent_weights_ = AddInput(recurrent_weights);
bias_ = AddInput(TensorType_FLOAT32);
hidden_state_ = AddInput(TensorType_FLOAT32, true);
output_ = AddOutput(TensorType_FLOAT32);
SetBuiltinOp(BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN,
BuiltinOptions_SequenceRNNOptions,
CreateSequenceRNNOptions(builder_, time_major,
ActivationFunctionType_RELU,
asymmetric_quantize_inputs)
.Union());
if (time_major) {
BuildInterpreter({{sequence_len_, batches_, input_size_},
{units_, input_size_},
{units_, units_},
{units_},
{batches_, units}});
} else {
BuildInterpreter({{batches_, sequence_len_, input_size_},
{units_, input_size_},
{units_, units_},
{units_},
{batches_, units_}});
}
}
void SetBias(std::initializer_list<float> f) { PopulateTensor(bias_, f); }
void SetWeights(std::initializer_list<float> f) {
PopulateTensor(weights_, f);
}
void SetRecurrentWeights(std::initializer_list<float> f) {
PopulateTensor(recurrent_weights_, f);
}
void SetInput(std::initializer_list<float> data) {
PopulateTensor(input_, data);
}
void SetInput(int offset, float* begin, float* end) {
PopulateTensor(input_, offset, begin, end);
}
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
int input_size() { return input_size_; }
int num_units() { return units_; }
int num_batches() { return batches_; }
int sequence_len() { return sequence_len_; }
protected:
int input_;
int weights_;
int recurrent_weights_;
int bias_;
int hidden_state_;
int output_;
int batches_;
int sequence_len_;
int units_;
int input_size_;
};
// The hybrid model has quantized weights and recurrent_weights.
class HybridUnidirectionalRNNOpModel : public UnidirectionalRNNOpModel {
public:
HybridUnidirectionalRNNOpModel(int batches, int sequence_len, int units,
int size, bool time_major,
TensorType tensor_type,
bool asymmetric_quantize_inputs)
: UnidirectionalRNNOpModel(batches, sequence_len, units, size, time_major,
tensor_type, tensor_type,
asymmetric_quantize_inputs) {
tensor_type_ = tensor_type;
}
void SetWeights(int weights_idx, const std::vector<float>& f) {
if (tensor_type_ == TensorType_UINT8) {
SymmetricQuantizeAndPopulate(weights_idx, f);
} else {
SignedSymmetricQuantizeAndPopulate(weights_idx, f);
}
}
void SetWeights(std::initializer_list<float> f) { SetWeights(weights_, f); }
void SetRecurrentWeights(std::initializer_list<float> f) {
SetWeights(recurrent_weights_, f);
}
protected:
TensorType tensor_type_;
};
TEST(UnidirectionalRNNOpTest, BlackBoxTest) {
UnidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*units=*/16, /*size=*/8, /*time_major=*/false);
rnn.SetWeights(rnn_weights);
rnn.SetBias(rnn_bias);
rnn.SetRecurrentWeights(rnn_recurrent_weights);
const int input_sequence_size = rnn.input_size() * rnn.sequence_len();
float* batch_start = rnn_input;
float* batch_end = batch_start + input_sequence_size;
rnn.SetInput(0, batch_start, batch_end);
rnn.SetInput(input_sequence_size, batch_start, batch_end);
rnn.Invoke();
float* golden_start = rnn_golden_output;
float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len();
std::vector<float> expected;
expected.insert(expected.end(), golden_start, golden_end);
expected.insert(expected.end(), golden_start, golden_end);
EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(expected)));
}
class HybridUnidirectionalRNNOpModelOpTest
: public ::testing::TestWithParam<bool> {};
TEST_P(HybridUnidirectionalRNNOpModelOpTest, BlackBoxTestUint8) {
HybridUnidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*units=*/16, /*size=*/8,
/*time_major=*/false, TensorType_UINT8,
GetParam());
rnn.SetWeights(rnn_weights);
rnn.SetBias(rnn_bias);
rnn.SetRecurrentWeights(rnn_recurrent_weights);
const int input_sequence_size = rnn.input_size() * rnn.sequence_len();
float* batch_start = rnn_input;
float* batch_end = batch_start + input_sequence_size;
rnn.SetInput(0, batch_start, batch_end);
rnn.SetInput(input_sequence_size, batch_start, batch_end);
rnn.Invoke();
float* golden_start = rnn_golden_output;
float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len();
std::vector<float> expected;
expected.insert(expected.end(), golden_start, golden_end);
expected.insert(expected.end(), golden_start, golden_end);
EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(
expected, /*max_abs_error=*/0.013)));
}
TEST_P(HybridUnidirectionalRNNOpModelOpTest, BlackBoxTestInt8) {
HybridUnidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*units=*/16, /*size=*/8,
/*time_major=*/false, TensorType_INT8,
GetParam());
rnn.SetWeights(rnn_weights);
rnn.SetBias(rnn_bias);
rnn.SetRecurrentWeights(rnn_recurrent_weights);
const int input_sequence_size = rnn.input_size() * rnn.sequence_len();
float* batch_start = rnn_input;
float* batch_end = batch_start + input_sequence_size;
rnn.SetInput(0, batch_start, batch_end);
rnn.SetInput(input_sequence_size, batch_start, batch_end);
rnn.Invoke();
float* golden_start = rnn_golden_output;
float* golden_end = golden_start + rnn.num_units() * rnn.sequence_len();
std::vector<float> expected;
expected.insert(expected.end(), golden_start, golden_end);
expected.insert(expected.end(), golden_start, golden_end);
EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(
expected, /*max_abs_error=*/0.013)));
}
TEST(UnidirectionalRNNOpTest, TimeMajorBlackBoxTest) {
UnidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*units=*/16, /*size=*/8,
/*time_major=*/true);
rnn.SetWeights(rnn_weights);
rnn.SetBias(rnn_bias);
rnn.SetRecurrentWeights(rnn_recurrent_weights);
for (int i = 0; i < rnn.sequence_len(); i++) {
float* batch_start = rnn_input + i * rnn.input_size();
float* batch_end = batch_start + rnn.input_size();
// The two batches are identical.
rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end);
rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end);
}
rnn.Invoke();
std::vector<float> expected;
for (int i = 0; i < rnn.sequence_len(); i++) {
float* golden_batch_start = rnn_golden_output + i * rnn.num_units();
float* golden_batch_end = golden_batch_start + rnn.num_units();
expected.insert(expected.end(), golden_batch_start, golden_batch_end);
expected.insert(expected.end(), golden_batch_start, golden_batch_end);
}
EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(expected)));
}
TEST_P(HybridUnidirectionalRNNOpModelOpTest, TimeMajorBlackBoxTestUint8) {
HybridUnidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*units=*/16, /*size=*/8,
/*time_major=*/true, TensorType_UINT8,
GetParam());
rnn.SetWeights(rnn_weights);
rnn.SetBias(rnn_bias);
rnn.SetRecurrentWeights(rnn_recurrent_weights);
for (int i = 0; i < rnn.sequence_len(); i++) {
float* batch_start = rnn_input + i * rnn.input_size();
float* batch_end = batch_start + rnn.input_size();
// The two batches are identical.
rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end);
rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end);
}
rnn.Invoke();
std::vector<float> expected;
for (int i = 0; i < rnn.sequence_len(); i++) {
float* golden_batch_start = rnn_golden_output + i * rnn.num_units();
float* golden_batch_end = golden_batch_start + rnn.num_units();
expected.insert(expected.end(), golden_batch_start, golden_batch_end);
expected.insert(expected.end(), golden_batch_start, golden_batch_end);
}
EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(
expected, /*max_abs_error=*/0.013)));
}
TEST_P(HybridUnidirectionalRNNOpModelOpTest, TimeMajorBlackBoxTestInt8) {
HybridUnidirectionalRNNOpModel rnn(/*batches=*/2, /*sequence_len=*/16,
/*units=*/16, /*size=*/8,
/*time_major=*/true, TensorType_INT8,
GetParam());
rnn.SetWeights(rnn_weights);
rnn.SetBias(rnn_bias);
rnn.SetRecurrentWeights(rnn_recurrent_weights);
for (int i = 0; i < rnn.sequence_len(); i++) {
float* batch_start = rnn_input + i * rnn.input_size();
float* batch_end = batch_start + rnn.input_size();
// The two batches are identical.
rnn.SetInput(2 * i * rnn.input_size(), batch_start, batch_end);
rnn.SetInput((2 * i + 1) * rnn.input_size(), batch_start, batch_end);
}
rnn.Invoke();
std::vector<float> expected;
for (int i = 0; i < rnn.sequence_len(); i++) {
float* golden_batch_start = rnn_golden_output + i * rnn.num_units();
float* golden_batch_end = golden_batch_start + rnn.num_units();
expected.insert(expected.end(), golden_batch_start, golden_batch_end);
expected.insert(expected.end(), golden_batch_start, golden_batch_end);
}
EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(
expected, /*max_abs_error=*/0.013)));
}
INSTANTIATE_TEST_SUITE_P(HybridUnidirectionalRNNOpModelOpTest,
HybridUnidirectionalRNNOpModelOpTest,
::testing::ValuesIn({true, false}));
} // namespace
} // namespace tflite