253 lines
9.1 KiB
C++
253 lines
9.1 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/kernels/internal/reference/strided_slice.h"
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
|
#include "tensorflow/lite/kernels/internal/strided_slice_logic.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace strided_slice {
|
|
|
|
enum KernelType {
|
|
kReference,
|
|
// TODO(soroosh): add kGenericOptimized
|
|
};
|
|
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kBeginTensor = 1;
|
|
constexpr int kEndTensor = 2;
|
|
constexpr int kStridesTensor = 3;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
struct StridedSliceContext {
|
|
StridedSliceContext(TfLiteContext* context, TfLiteNode* node) {
|
|
params = reinterpret_cast<TfLiteStridedSliceParams*>(node->builtin_data);
|
|
input = GetInput(context, node, kInputTensor);
|
|
begin = GetInput(context, node, kBeginTensor);
|
|
end = GetInput(context, node, kEndTensor);
|
|
strides = GetInput(context, node, kStridesTensor);
|
|
output = GetOutput(context, node, kOutputTensor);
|
|
dims = NumDimensions(input);
|
|
}
|
|
const TfLiteStridedSliceParams* params;
|
|
const TfLiteTensor* input;
|
|
const TfLiteTensor* begin;
|
|
const TfLiteTensor* end;
|
|
const TfLiteTensor* strides;
|
|
TfLiteTensor* output;
|
|
int dims;
|
|
};
|
|
|
|
StridedSliceParams BuildStridedSliceParams(StridedSliceContext* op_context) {
|
|
StridedSliceParams op_params;
|
|
op_params.start_indices_count = op_context->dims;
|
|
op_params.stop_indices_count = op_context->dims;
|
|
op_params.strides_count = op_context->dims;
|
|
|
|
for (int i = 0; i < op_context->dims; ++i) {
|
|
op_params.start_indices[i] = GetTensorData<int32_t>(op_context->begin)[i];
|
|
op_params.stop_indices[i] = GetTensorData<int32_t>(op_context->end)[i];
|
|
op_params.strides[i] = GetTensorData<int32_t>(op_context->strides)[i];
|
|
}
|
|
|
|
op_params.begin_mask = op_context->params->begin_mask;
|
|
op_params.ellipsis_mask = 0;
|
|
op_params.end_mask = op_context->params->end_mask;
|
|
op_params.new_axis_mask = 0;
|
|
op_params.shrink_axis_mask = op_context->params->shrink_axis_mask;
|
|
return op_params;
|
|
}
|
|
|
|
// Processes the indexing tensors (begin, end and strides) to resize the
|
|
// output tensor. This function is callable from both Prepare() and Eval() as
|
|
// long as the caller ensures the indexing tensors are present.
|
|
TfLiteStatus ResizeOutputTensor(TfLiteContext* context,
|
|
StridedSliceContext* op_context) {
|
|
std::vector<int> output_shape_vector;
|
|
StridedSliceParams op_params = BuildStridedSliceParams(op_context);
|
|
RuntimeShape input_shape = GetTensorShape(op_context->input);
|
|
|
|
for (int idx = op_context->dims - 1; idx >= 0; --idx) {
|
|
int32_t stride = GetTensorData<int32_t>(op_context->strides)[idx];
|
|
TF_LITE_ENSURE_MSG(context, stride != 0, "stride value has to be non-zero");
|
|
|
|
int32_t begin =
|
|
::tflite::strided_slice::StartForAxis(op_params, input_shape, idx);
|
|
int32_t end = ::tflite::strided_slice::StopForAxis(op_params, input_shape,
|
|
idx, begin);
|
|
|
|
// When shrinking an axis, the end position does not matter (and can be
|
|
// incorrect when negative indexing is used, see Issue #19260). Always use
|
|
// begin + 1 to generate a length 1 slice, since begin has
|
|
// already been adjusted for negative indices by GetBeginValueAtIndex.
|
|
const bool shrink_axis = op_context->params->shrink_axis_mask & (1 << idx);
|
|
if (shrink_axis) {
|
|
end = begin + 1;
|
|
}
|
|
|
|
// This is valid for both positive and negative strides
|
|
int32_t dim_shape = std::ceil((end - begin) / static_cast<float>(stride));
|
|
dim_shape = dim_shape < 0 ? 0 : dim_shape;
|
|
if (!shrink_axis) {
|
|
output_shape_vector.push_back(dim_shape);
|
|
}
|
|
}
|
|
|
|
TfLiteIntArray* output_shape =
|
|
TfLiteIntArrayCreate(output_shape_vector.size());
|
|
|
|
std::reverse_copy(output_shape_vector.begin(), output_shape_vector.end(),
|
|
output_shape->data);
|
|
|
|
TF_LITE_ENSURE_STATUS(
|
|
context->ResizeTensor(context, op_context->output, output_shape));
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 4);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
StridedSliceContext op_context(context, node);
|
|
|
|
// Ensure validity of input tensor and its dimension
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(op_context.begin), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(op_context.end), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(op_context.strides), 1);
|
|
TF_LITE_ENSURE_EQ(context, op_context.input->type, op_context.output->type);
|
|
// Only INT32 begin/end/strides are supported
|
|
// TODO(soroosh) add support for INT64
|
|
TF_LITE_ENSURE_TYPES_EQ(context, op_context.begin->type, kTfLiteInt32);
|
|
TF_LITE_ENSURE_TYPES_EQ(context, op_context.end->type, kTfLiteInt32);
|
|
TF_LITE_ENSURE_TYPES_EQ(context, op_context.strides->type, kTfLiteInt32);
|
|
TF_LITE_ENSURE_MSG(context, op_context.dims <= 5,
|
|
"StridedSlice op only supports 1D-5D input arrays.");
|
|
|
|
// TODO(b/138098220): Remove when bug is resolved.
|
|
// Currently, working on using the compiler to cannonize strided_slice,
|
|
// so ellipis_mask will become part of begin/end mask, new_axis_mask will
|
|
// involve in a reshape to pad the dimensions.
|
|
TF_LITE_ENSURE_MSG(context, op_context.params->ellipsis_mask == 0,
|
|
"ellipsis_mask is not implemented yet.");
|
|
TF_LITE_ENSURE_MSG(context, op_context.params->new_axis_mask == 0,
|
|
"new_axis_mask is not implemented yet.");
|
|
|
|
// Postpone allocation of output if any of the indexing tensors is not
|
|
// constant
|
|
if (!(IsConstantTensor(op_context.begin) &&
|
|
IsConstantTensor(op_context.end) &&
|
|
IsConstantTensor(op_context.strides))) {
|
|
SetTensorToDynamic(op_context.output);
|
|
return kTfLiteOk;
|
|
}
|
|
return ResizeOutputTensor(context, &op_context);
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
StridedSliceContext op_context(context, node);
|
|
|
|
if (IsDynamicTensor(op_context.output)) {
|
|
TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, &op_context));
|
|
}
|
|
StridedSliceParams op_params = BuildStridedSliceParams(&op_context);
|
|
|
|
#define TF_LITE_STRIDED_SLICE(kernel_type, data_type) \
|
|
kernel_type::StridedSlice(op_params, GetTensorShape(op_context.input), \
|
|
GetTensorData<data_type>(op_context.input), \
|
|
GetTensorShape(op_context.output), \
|
|
GetTensorData<data_type>(op_context.output))
|
|
|
|
switch (op_context.input->type) {
|
|
case kTfLiteFloat32:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_STRIDED_SLICE(reference_ops, float);
|
|
}
|
|
break;
|
|
case kTfLiteInt32:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_STRIDED_SLICE(reference_ops, int32_t);
|
|
}
|
|
break;
|
|
case kTfLiteInt64:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_STRIDED_SLICE(reference_ops, int64_t);
|
|
}
|
|
break;
|
|
case kTfLiteUInt8:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_STRIDED_SLICE(reference_ops, uint8_t);
|
|
}
|
|
break;
|
|
case kTfLiteInt8:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_STRIDED_SLICE(reference_ops, int8_t);
|
|
}
|
|
break;
|
|
case kTfLiteInt16:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_STRIDED_SLICE(reference_ops, int16_t);
|
|
}
|
|
break;
|
|
case kTfLiteBool:
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_STRIDED_SLICE(reference_ops, bool);
|
|
}
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context,
|
|
"Type %s is currently not supported "
|
|
"by StridedSlice.",
|
|
TfLiteTypeGetName(op_context.input->type));
|
|
return kTfLiteError;
|
|
}
|
|
#undef TF_LITE_STRIDED_SLICE
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace strided_slice
|
|
|
|
TfLiteRegistration* Register_STRIDED_SLICE_REF() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, strided_slice::Prepare,
|
|
strided_slice::Eval<strided_slice::kReference>};
|
|
return &r;
|
|
}
|
|
|
|
// TODO(soroosh): add optimized
|
|
TfLiteRegistration* Register_STRIDED_SLICE() {
|
|
return Register_STRIDED_SLICE_REF();
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|