98 lines
3.5 KiB
C++
98 lines
3.5 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <string.h>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace squeeze {
|
|
|
|
struct SqueezeContext {
|
|
SqueezeContext(TfLiteContext* context, TfLiteNode* node)
|
|
: params(reinterpret_cast<TfLiteSqueezeParams*>(node->builtin_data)),
|
|
input(GetInput(context, node, 0)),
|
|
output(GetOutput(context, node, 0)) {}
|
|
TfLiteSqueezeParams* params;
|
|
const TfLiteTensor* const input;
|
|
TfLiteTensor* output;
|
|
};
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
SqueezeContext op_context(context, node);
|
|
int input_num_dims = NumDimensions(op_context.input);
|
|
int num_squeeze_dims = op_context.params->num_squeeze_dims;
|
|
|
|
// Determines number of dimensions of output tensor after squeeze.
|
|
const TfLiteIntArray* input_dims = op_context.input->dims;
|
|
const int* squeeze_dims = op_context.params->squeeze_dims;
|
|
TF_LITE_ENSURE(context, input_num_dims <= 8);
|
|
bool should_squeeze[8] = {false};
|
|
int num_squeezed_dims = 0;
|
|
if (num_squeeze_dims == 0) {
|
|
for (int idx = 0; idx < input_num_dims; ++idx) {
|
|
if (input_dims->data[idx] == 1) {
|
|
should_squeeze[idx] = true;
|
|
++num_squeezed_dims;
|
|
}
|
|
}
|
|
} else {
|
|
for (int idx = 0; idx < num_squeeze_dims; ++idx) {
|
|
int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + input_num_dims
|
|
: squeeze_dims[idx];
|
|
TF_LITE_ENSURE(context, current >= 0 && current < input_num_dims &&
|
|
input_dims->data[current] == 1);
|
|
if (!should_squeeze[current]) ++num_squeezed_dims;
|
|
should_squeeze[current] = true;
|
|
}
|
|
}
|
|
// Sets output dimensions.
|
|
TfLiteIntArray* output_dims =
|
|
TfLiteIntArrayCreate(input_num_dims - num_squeezed_dims);
|
|
for (int in_idx = 0, out_idx = 0; in_idx < input_num_dims; ++in_idx) {
|
|
if (!should_squeeze[in_idx]) {
|
|
output_dims->data[out_idx++] = input_dims->data[in_idx];
|
|
}
|
|
}
|
|
return context->ResizeTensor(context, op_context.output, output_dims);
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
SqueezeContext op_context(context, node);
|
|
TF_LITE_ENSURE_EQ(context, op_context.input->bytes, op_context.output->bytes);
|
|
memcpy(op_context.output->data.raw, op_context.input->data.raw,
|
|
op_context.input->bytes);
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace squeeze
|
|
|
|
TfLiteRegistration* Register_SQUEEZE() {
|
|
static TfLiteRegistration r = {nullptr, nullptr, squeeze::Prepare,
|
|
squeeze::Eval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|