STT-tensorflow/tensorflow/lite/kernels/segment_sum.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

115 lines
4.1 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace segment_sum {
static const int kInputDataTensor = 0;
static const int kInputSegmentIdsTensor = 1;
static const int kOutputTensor = 0;
TfLiteStatus ResizeOutputTensor(TfLiteContext* context,
const TfLiteTensor* data,
const TfLiteTensor* segment_ids,
TfLiteTensor* output) {
int max_index = -1;
const int segment_id_size = segment_ids->dims->data[0];
if (segment_id_size > 0) {
max_index = segment_ids->data.i32[segment_id_size - 1];
}
const int data_rank = NumDimensions(data);
TfLiteIntArray* output_shape = TfLiteIntArrayCreate(NumDimensions(data));
output_shape->data[0] = max_index + 1;
for (int i = 1; i < data_rank; ++i) {
output_shape->data[i] = data->dims->data[i];
}
return context->ResizeTensor(context, output, output_shape);
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* data = GetInput(context, node, kInputDataTensor);
const TfLiteTensor* segment_ids =
GetInput(context, node, kInputSegmentIdsTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE(context,
data->type == kTfLiteInt32 || data->type == kTfLiteFloat32);
TF_LITE_ENSURE_EQ(context, segment_ids->type, kTfLiteInt32);
if (!IsConstantTensor(data) || !IsConstantTensor(segment_ids)) {
SetTensorToDynamic(output);
return kTfLiteOk;
}
return ResizeOutputTensor(context, data, segment_ids, output);
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* data = GetInput(context, node, kInputDataTensor);
const TfLiteTensor* segment_ids =
GetInput(context, node, kInputSegmentIdsTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
if (IsDynamicTensor(output)) {
TF_LITE_ENSURE_OK(context,
ResizeOutputTensor(context, data, segment_ids, output));
}
#define TF_LITE_SEGMENT_SUM(dtype) \
reference_ops::SegmentSum<dtype>( \
GetTensorShape(data), GetTensorData<dtype>(data), \
GetTensorShape(segment_ids), GetTensorData<int32_t>(segment_ids), \
GetTensorShape(output), GetTensorData<dtype>(output));
switch (data->type) {
case kTfLiteInt32:
TF_LITE_SEGMENT_SUM(int32_t);
break;
case kTfLiteFloat32:
TF_LITE_SEGMENT_SUM(float);
break;
default:
context->ReportError(context,
"Currently SegmentSum doesn't support type: %s",
TfLiteTypeGetName(data->type));
return kTfLiteError;
}
#undef TF_LITE_SEGMENT_SUM
return kTfLiteOk;
}
} // namespace segment_sum
TfLiteRegistration* Register_SEGMENT_SUM() {
static TfLiteRegistration r = {nullptr, nullptr, segment_sum::Prepare,
segment_sum::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite