STT-tensorflow/tensorflow/lite/kernels/quantize_test.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

463 lines
18 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <cstdint>
#include <initializer_list>
#include <vector>
#include <gtest/gtest.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
class QuantizeOpModel : public SingleOpModel {
public:
QuantizeOpModel(const TensorData& input, const TensorData& output) {
input_ = AddInput(input);
output_ = AddOutput(output);
SetBuiltinOp(BuiltinOperator_QUANTIZE, BuiltinOptions_QuantizeOptions,
CreateQuantizeOptions(builder_).Union());
BuildInterpreter({GetShape(input_)});
}
void SetInput(std::initializer_list<float> data) {
PopulateTensor(input_, data);
}
template <typename T>
void SetInputAndQuantize(std::initializer_list<float> data) {
QuantizeAndPopulate<T>(input_, data);
}
template <typename T>
std::vector<T> GetOutput() {
return ExtractVector<T>(output_);
}
private:
int input_;
int output_;
};
TEST(QuantizeOpTest, UINT8) {
// [-63.5, 64] -> scale=0.5 zero_point=127 for UINT8
QuantizeOpModel m({TensorType_FLOAT32, {2, 5}},
{TensorType_UINT8, {2, 5}, 0, 0, 0.5, 127});
m.SetInput({-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64});
m.Invoke();
EXPECT_THAT(m.GetOutput<uint8_t>(),
ElementsAreArray({0, 1, 2, 3, 4, 251, 252, 253, 254, 255}));
}
TEST(QuantizeOpTest, INT8) {
// [-63.5, 64] -> scale=0.5, zero_point=1 for INT8
QuantizeOpModel m({TensorType_FLOAT32, {2, 5}},
{TensorType_INT8, {2, 5}, 0, 0, 0.5, -1});
m.SetInput({-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray(
{-128, -127, -126, -125, -124, 123, 124, 125, 126, 127}));
}
TEST(QuantizeOpTest, INT16) {
QuantizeOpModel m({TensorType_FLOAT32, {2, 5}},
{TensorType_INT16, {2, 5}, 0, 0, 0.005, 0});
m.SetInput({-63.5, -63, -3, -2, -1, 1, 2, 3, 63.5, 64});
m.Invoke();
EXPECT_THAT(m.GetOutput<int16_t>(),
ElementsAreArray({-12700, -12600, -600, -400, -200, 200, 400, 600,
12700, 12800}));
}
// rescale factor is around 2
TEST(QuantizeOpTest, Int16Int16) {
QuantizeOpModel m({TensorType_INT16, {1, 1, 2, 5}, -16383, 16384},
{TensorType_INT16, {1, 1, 2, 5}, 0, 16384});
m.SetInputAndQuantize<int16_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(m.GetOutput<int16_t>(),
ElementsAreArray({-32764, -32760, -32756, -32752, -32748, -32744,
-32740, -32736, -32732, -32728}));
}
// zero point is -1, scale is 0.5
TEST(QuantizeOpTest, Int16Int16SameScale) {
QuantizeOpModel m({TensorType_INT16, {1, 1, 2, 5}, -16384, 16384},
{TensorType_INT16, {1, 1, 2, 5}, -16384, 16384});
m.SetInputAndQuantize<int16_t>({0, 1, 2, 3, 4, 5, 6, 7, 8, 37767});
m.Invoke();
EXPECT_THAT(m.GetOutput<int16_t>(),
ElementsAreArray({-1, 1, 3, 5, 7, 9, 11, 13, 15, 32767}));
}
// Input scale 0.500000, output scale 0.500000, input zeropoint -1, output
// zeropoint -1
TEST(QuantizeOpTest, Int8Int8SameScale) {
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -63.5, 64},
{TensorType_INT8, {1, 1, 2, 5}, -63.5, 64});
// Input will quantized to {1,3,5,7,9,11,13,15,17,19}.
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19}));
}
// Input scale 0.500000, output scale 1.000000, input zeropoint -1, output
// zeropoint -1
TEST(QuantizeOpTest, Int8Int8LargerScale) {
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -63.5, 64},
{TensorType_INT8, {1, 1, 2, 5}, -127, 128});
// Input will quantized to {1,3,5,7,9,11,13,15,17,19}.
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
}
// Input scale 1.000000, output scale 0.500000, input zeropoint -1, output
// zeropoint -1
TEST(QuantizeOpTest, Int8Int8SmallerScale) {
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -127, 128},
{TensorType_INT8, {1, 1, 2, 5}, -63.5, 64});
// Input will quantized to {0,1,2,3,4,5,6,7,8,9}.
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19}));
}
// Same as previous test, except more data to hit the neon path.
TEST(QuantizeOpTest, Int8Int8SmallerScaleNeonPath) {
QuantizeOpModel m({TensorType_INT8, {1, 1, 4, 5}, -127, 128},
{TensorType_INT8, {1, 1, 4, 5}, -63.5, 64});
// Input will quantized to {0,1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1,0}.
m.SetInputAndQuantize<int8_t>(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
19, 17, 15, 13, 11, 9, 7, 5, 3, 1}));
}
// Input scale 0.500000, output scale 0.500000, input zeropoint 127, output
// zeropoint 127
TEST(QuantizeOpTest, UInt8UInt8SameScale) {
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64},
{TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64});
// Input will quantized to {129,131,133,135,137,139,141,143,145,147}.
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(
m.GetOutput<uint8_t>(),
ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147}));
}
// Input scale 0.500000, output scale 1.000000, input zeropoint 127, output
// zeropoint 127
TEST(QuantizeOpTest, Uint8Uint8LargerScale) {
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64},
{TensorType_UINT8, {1, 1, 2, 5}, -127, 128});
// Input will quantized to {129,131,133,135,137,139,141,143,145,147}.
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(
m.GetOutput<uint8_t>(),
ElementsAreArray({128, 129, 130, 131, 132, 133, 134, 135, 136, 137}));
}
// Input scale 1.000000, output scale 0.500000, input zeropoint 127, output
// zeropoint 127
TEST(QuantizeOpTest, Uint8Uint8SmallerScale) {
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -127, 128},
{TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64});
// Input will quantized to {128, 129, 130, 131, 132, 133, 134, 135, 136, 137}.
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(
m.GetOutput<uint8_t>(),
ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147}));
}
// Same as previous test, except more data to hit the neon path.
TEST(QuantizeOpTest, Uint8Uint8SmallerScaleNeonPath) {
QuantizeOpModel m({TensorType_UINT8, {1, 1, 4, 5}, -127, 128},
{TensorType_UINT8, {1, 1, 4, 5}, -63.5, 64});
// Input will quantized to {128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
// 137, 136, 135, 134, 133, 132, 131, 130, 129, 128}.
m.SetInputAndQuantize<uint8_t>(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
m.Invoke();
EXPECT_THAT(
m.GetOutput<uint8_t>(),
ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147,
147, 145, 143, 141, 139, 137, 135, 133, 131, 129}));
}
// Input scale 1.000000, output scale 1.000000, input zeropoint -1, output
// zeropoint 127
TEST(QuantizeOpTest, Int8Uint8SameScale) {
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -127, 128},
{TensorType_UINT8, {1, 1, 2, 5}, -127, 128});
// Input will quantized to {0,1,2,3,4,5,6,7,8,9}.
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(
m.GetOutput<uint8_t>(),
ElementsAreArray({128, 129, 130, 131, 132, 133, 134, 135, 136, 137}));
}
// Same as previous test, except more data to hit the neon path.
TEST(QuantizeOpTest, Int8UInt8SameScaleNeonPath) {
QuantizeOpModel m({TensorType_INT8, {1, 1, 4, 5}, -127, 128},
{TensorType_UINT8, {1, 1, 4, 5}, -127, 128});
// Input will quantized to {0,1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1,0}.
m.SetInputAndQuantize<int8_t>(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
m.Invoke();
EXPECT_THAT(
m.GetOutput<uint8_t>(),
ElementsAreArray({128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
137, 136, 135, 134, 133, 132, 131, 130, 129, 128}));
}
// Input scale 1.000000, output scale 0.500000, input zeropoint -1, output
// zeropoint 127
TEST(QuantizeOpTest, Int8Uint8SmallerScale) {
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -127, 128},
{TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64});
// Input will quantized to {0,1,2,3,4,5,6,7,8,9}.
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(
m.GetOutput<uint8_t>(),
ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147}));
}
// Same as previous test, except more data to hit the neon path.
TEST(QuantizeOpTest, Int8Uint8SmallerScaleNeonPath) {
QuantizeOpModel m({TensorType_INT8, {1, 1, 4, 5}, -127, 128},
{TensorType_UINT8, {1, 1, 4, 5}, -63.5, 64});
// Input will quantized to {0,1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1,0}.
m.SetInputAndQuantize<int8_t>(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
m.Invoke();
EXPECT_THAT(
m.GetOutput<uint8_t>(),
ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147,
147, 145, 143, 141, 139, 137, 135, 133, 131, 129}));
}
// Input scale 1.000000, output scale 2.000000, input zeropoint -1, output
// zeropoint 127
TEST(QuantizeOpTest, Int8Uint8LargerScale) {
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -127, 128},
{TensorType_UINT8, {1, 1, 2, 5}, -254, 256});
// Input will quantized to {0,1,2,3,4,5,6,7,8,9}.
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(
m.GetOutput<uint8_t>(),
ElementsAreArray({128, 128, 129, 129, 130, 130, 131, 131, 132, 132}));
}
// Same as previous test, except more data to hit the neon path.
TEST(QuantizeOpTest, Int8Uint8LargerScaleNeonPath) {
QuantizeOpModel m({TensorType_INT8, {1, 1, 4, 5}, -127, 128},
{TensorType_UINT8, {1, 1, 4, 5}, -254, 256});
// Input will quantized to {0,1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1,0}.
m.SetInputAndQuantize<int8_t>(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
m.Invoke();
EXPECT_THAT(
m.GetOutput<uint8_t>(),
ElementsAreArray({128, 128, 129, 129, 130, 130, 131, 131, 132, 132,
132, 132, 131, 131, 130, 130, 129, 129, 128, 128}));
}
// input scale 0.500000, output scale 0.500000, input zeropoint 127, output
// zeropoint -1
TEST(QuantizeOpTest, UInt8Int8SameScale128Diff) {
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -127, 128},
{TensorType_INT8, {1, 1, 2, 5}, -127, 128});
// Input will quantized to {128, 129, 130, 131, 132, 133, 134, 135, 136, 137}.
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
}
// Same as previous test, except more data to hit the neon path.
TEST(QuantizeOpTest, UInt8Int8SameScale128DiffNeonPath) {
QuantizeOpModel m({TensorType_UINT8, {1, 1, 4, 5}, -127, 128},
{TensorType_INT8, {1, 1, 4, 5}, -127, 128});
// Input will quantized to {128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
// 137, 136, 135, 134, 133, 132, 131, 130, 129, 128}.
m.SetInputAndQuantize<uint8_t>(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
}
// input scale 0.500000, output scale 0.500000, input zeropoint 0, output
// zeropoint -1
TEST(QuantizeOpTest, Uint8Int8SameScaleArbitraryDiff) {
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, 0, 127.5},
{TensorType_INT8, {1, 1, 2, 5}, -63.5, 64});
// Input will quantized to {2,4,6,8,10,12,14,16,18,20}.
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19}));
}
// Same as previous test, except more data to hit the neon path.
TEST(QuantizeOpTest, Uint8Int8SameScaleArbitraryDiffNeonPath) {
QuantizeOpModel m({TensorType_UINT8, {1, 1, 4, 5}, 0, 127.5},
{TensorType_INT8, {1, 1, 4, 5}, -63.5, 64});
// Input will quantized to
// {2,4,6,8,10,12,14,16,18,20,20,18,16,14,12,10,8,6,4,2}.
m.SetInputAndQuantize<uint8_t>(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
19, 17, 15, 13, 11, 9, 7, 5, 3, 1}));
}
// input scale 0.500000, output scale 1.000000, input zeropoint 0, output
// zeropoint -1
TEST(QuantizeOpTest, Uint8Int8LargerScale) {
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, 0, 127.5},
{TensorType_INT8, {1, 1, 2, 5}, -127, 128});
// Input will quantized to {2,4,6,8,10,12,14,16,18,20}.
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
}
// Same as previous test, except more data to hit the neon path.
TEST(QuantizeOpTest, Uint8Int8LargerScaleNeonPath) {
QuantizeOpModel m({TensorType_UINT8, {1, 1, 4, 5}, 0, 127.5},
{TensorType_INT8, {1, 1, 4, 5}, -127, 128});
// Input will quantized to
// {2,4,6,8,10,12,14,16,18,20,20,18,16,14,12,10,8,6,4,2}.
m.SetInputAndQuantize<uint8_t>(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
}
// input scale 1.000000, output scale 0.500000, input zeropoint 0, output
// zeropoint -1
TEST(QuantizeOpTest, Uint8Int8SmallerScale) {
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, 0, 255},
{TensorType_INT8, {1, 1, 2, 5}, -63.5, 64});
// Input will quantized to {1,2,3,4,5,6,7,8,9,10}.
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19}));
}
// Input scale 0.500000, output scale 0.500000, input zeropoint -1, output
// zeropoint -1
TEST(QuantizeOpTest, Int16Int8SameScale) {
QuantizeOpModel m({TensorType_INT16, {1, 1, 2, 5}, -63.5, 64},
{TensorType_INT8, {1, 1, 2, 5}, -63.5, 64});
// Input will quantized to {1,3,5,7,9,11,13,15,17,19}.
m.SetInputAndQuantize<int16_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19}));
}
// Input scale 0.500000, output scale 1.000000, input zeropoint -1, output
// zeropoint -1
TEST(QuantizeOpTest, Int16Int8LargerScale) {
QuantizeOpModel m({TensorType_INT16, {1, 1, 2, 5}, -63.5, 64},
{TensorType_INT8, {1, 1, 2, 5}, -127, 128});
m.SetInputAndQuantize<int16_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
}
// Input scale 1.000000, output scale 0.500000, input zeropoint -1, output
// zeropoint -1
TEST(QuantizeOpTest, Int16Int8SmallerScale) {
QuantizeOpModel m({TensorType_INT16, {1, 1, 2, 5}, -127, 128},
{TensorType_INT8, {1, 1, 2, 5}, -63.5, 64});
m.SetInputAndQuantize<int16_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19}));
}
// Same as previous test, except more data to hit the neon path.
TEST(QuantizeOpTest, Int16Int8SmallerScaleNeonPath) {
QuantizeOpModel m({TensorType_INT16, {1, 1, 4, 5}, -127, 128},
{TensorType_INT8, {1, 1, 4, 5}, -63.5, 64});
m.SetInputAndQuantize<int16_t>(
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
19, 17, 15, 13, 11, 9, 7, 5, 3, 1}));
}
} // namespace
} // namespace tflite