STT-tensorflow/tensorflow/lite/kernels/mul_test.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

486 lines
20 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stddef.h>
#include <stdint.h>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
class BaseMulOpModel : public SingleOpModel {
public:
BaseMulOpModel(const TensorData& input1, const TensorData& input2,
const TensorData& output,
ActivationFunctionType activation_type) {
input1_ = AddInput(input1);
input2_ = AddInput(input2);
output_ = AddOutput(output);
SetBuiltinOp(BuiltinOperator_MUL, BuiltinOptions_MulOptions,
CreateMulOptions(builder_, activation_type).Union());
BuildInterpreter({GetShape(input1_), GetShape(input2_)});
}
int input1() { return input1_; }
int input2() { return input2_; }
protected:
int input1_;
int input2_;
int output_;
};
class FloatMulOpModel : public BaseMulOpModel {
public:
using BaseMulOpModel::BaseMulOpModel;
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
};
class IntegerMulOpModel : public BaseMulOpModel {
public:
using BaseMulOpModel::BaseMulOpModel;
std::vector<int32_t> GetOutput() { return ExtractVector<int32_t>(output_); }
};
// For quantized Mul, the error shouldn't exceed (2*step + step^2).
// The param min=-1.0 & max=1.0 is used in the following tests.
// The tolerance value is ~0.0157.
const float kQuantizedStep = 2.0 / 255.0;
const float kQuantizedTolerance =
2.0 * kQuantizedStep + kQuantizedStep * kQuantizedStep;
const float kQuantizedStepInt16 = 2.0 / 32767.0;
const float kQuantizedToleranceInt16 =
2.0 * kQuantizedStepInt16 + kQuantizedStepInt16 * kQuantizedStepInt16;
class QuantizedMulOpModel : public BaseMulOpModel {
public:
using BaseMulOpModel::BaseMulOpModel;
template <typename integer_dtype>
std::vector<float> GetDequantizedOutput() {
return Dequantize<integer_dtype>(ExtractVector<integer_dtype>(output_),
GetScale(output_), GetZeroPoint(output_));
}
std::vector<float> GetDequantizedOutputInt16() {
return Dequantize<int16_t>(ExtractVector<int16_t>(output_),
GetScale(output_), GetZeroPoint(output_));
}
};
TEST(FloatMulOpTest, NoActivation) {
FloatMulOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}},
{TensorType_FLOAT32, {1, 2, 2, 1}},
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-0.2, 0.04, 0.21, 0.4})));
}
TEST(FloatMulOpTest, ActivationRELU_N1_TO_1) {
FloatMulOpModel m(
{TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}},
{TensorType_FLOAT32, {}}, ActivationFunctionType_RELU_N1_TO_1);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 5});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-0.2, 0.04, 0.21, 1.0})));
}
TEST(FloatMulOpTest, VariousInputShapes) {
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel m({TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8, 1.1, 2.0});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.5, 1.1, 0.1});
m.Invoke();
EXPECT_THAT(
m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-0.2, 0.04, 0.21, 0.4, 1.21, 0.2})))
<< "With shape number " << i;
}
}
TEST(FloatMulOpTest, WithScalarBroadcast) {
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel m({TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {}}, // always a scalar
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8, 1.1, 2.0});
m.PopulateTensor<float>(m.input2(), {0.1});
m.Invoke();
EXPECT_THAT(
m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-0.2, 0.02, 0.07, 0.08, 0.11, 0.2})))
<< "With shape number " << i;
}
}
TEST(FloatMulOpTest, WithBroadcast) {
std::vector<std::vector<int>> test_shapes = {
{2, 4}, {2, 1, 4}, {1, 2, 4}, {1, 2, 1, 4}};
for (int i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel m({TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {4}}, // always a scalar
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(),
{-2.0, 0.2, 0.7, 0.8, 1.1, 2.0, 1.1, 0.8});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.4});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear(
{-0.2, 0.04, 0.21, 0.32, 0.11, 0.4, 0.33, 0.32})))
<< "With shape number " << i;
}
}
TEST(FloatMulOpTest, MixedBroadcast) {
const std::vector<int> base_shape = {2, 3, 1, 2};
std::vector<std::vector<int>> test_shapes = {
{1, 1, 3, 2}, {1, 3, 1, 2}, {2, 1, 3, 1}, {2, 3, 1, 1}};
std::vector<std::vector<float>> test_outputs = {
{-0.06f, 0.69f, 0.12f, 1.15f, -0.30f, 2.07f, 0.18f, 0.15f, -0.36f,
0.25f, 0.90f, 0.45f, 0.16f, -0.33f, -0.32f, -0.55f, 0.80f, -0.99f,
0.24f, 0.84f, -0.48f, 1.40f, 1.20f, 2.52f, -0.32f, 0.00f, 0.64f,
0.00f, -1.60f, 0.00f, 0.14f, -0.66f, -0.28f, -1.10f, 0.70f, -1.98f},
{-0.06f, 0.69f, -0.36f, 0.25f, 0.80f, -0.99f, 0.24f, 0.84f, 0.64f, 0.00f,
0.70f, -1.98f},
{-0.06f, 0.46f, -0.09f, 0.69f, 0.12f, -0.92f, 0.18f, 0.10f, 0.27f,
0.15f, -0.36f, -0.20f, 0.16f, -0.22f, 0.24f, -0.33f, -0.32f, 0.44f,
0.60f, 1.40f, 1.20f, 2.80f, 1.08f, 2.52f, -0.80f, 0.00f, -1.60f,
0.00f, -1.44f, 0.00f, 0.35f, -1.10f, 0.70f, -2.20f, 0.63f, -1.98f},
{-0.06f, 0.46f, 0.27f, 0.15f, -0.32f, 0.44f, 0.60f, 1.40f, -1.60f, 0.00f,
0.63f, -1.98f}};
for (size_t i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel model_fixture(
{TensorType_FLOAT32, base_shape}, {TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
model_fixture.PopulateTensor<float>(
model_fixture.input1(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
model_fixture.PopulateTensor<float>(model_fixture.input2(),
{0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
model_fixture.Invoke();
EXPECT_THAT(model_fixture.GetOutput(),
ElementsAreArray(ArrayFloatNear(test_outputs[i], 0.0001f)))
<< "With shape number " << i;
}
// Re-run with exchanged inputs.
for (size_t i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel model_fixture(
{TensorType_FLOAT32, test_shapes[i]}, {TensorType_FLOAT32, base_shape},
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
model_fixture.PopulateTensor<float>(model_fixture.input1(),
{0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
model_fixture.PopulateTensor<float>(
model_fixture.input2(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
model_fixture.Invoke();
EXPECT_THAT(model_fixture.GetOutput(),
ElementsAreArray(ArrayFloatNear(test_outputs[i], 0.0001f)))
<< "With shape number " << i;
}
}
TEST(FloatMulOpTest, WithBroadcast2Elements) {
std::vector<std::vector<int>> test_shapes = {
{2, 2}, {2, 1, 2}, {1, 2, 2}, {1, 2, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
FloatMulOpModel m({TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {2}}, // always a scalar
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.7, 0.8});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-0.2, 0.04, 0.07, 0.16})))
<< "With shape number " << i;
}
}
TEST(IntegerMulOpTest, NoActivation) {
IntegerMulOpModel m({TensorType_INT32, {1, 2, 2, 1}},
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
ActivationFunctionType_NONE);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8});
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-20, 4, 21, 40}));
}
TEST(IntegerMulOpTest, ActivationRELU_N1_TO_1) {
IntegerMulOpModel m({TensorType_INT32, {1, 2, 2, 1}},
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
ActivationFunctionType_RELU_N1_TO_1);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8});
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1, 1, 1, 1}));
}
TEST(IntegerMulOpTest, VariousInputShapes) {
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
IntegerMulOpModel m({TensorType_INT32, test_shapes[i]},
{TensorType_INT32, test_shapes[i]},
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8, 11, 20});
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5, 11, 1});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-20, 4, 21, 40, 121, 20}))
<< "With shape number " << i;
}
}
TEST(IntegerMulOpTest, WithBroadcast) {
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
IntegerMulOpModel m({TensorType_INT32, test_shapes[i]},
{TensorType_INT32, {}}, // always a scalar
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8, 11, 20});
m.PopulateTensor<int32_t>(m.input2(), {1});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-20, 2, 7, 8, 11, 20})))
<< "With shape number " << i;
}
}
template <TensorType tensor_type, typename integer_dtype>
void NoActivation() {
QuantizedMulOpModel m({tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
{tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
{tensor_type, {}, -1.0, 1.0},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<integer_dtype>(m.input1(), {-0.8, 0.2, 0.9, 0.7});
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {0.6, 0.4, 0.9, 0.8});
m.Invoke();
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear({-0.48, 0.08, 0.81, 0.56},
kQuantizedTolerance)));
}
template <TensorType tensor_type, typename integer_dtype>
void NoActivationLargeMultiplier() {
// Intentionally pathological output range much narrower than needed
// to represent input values to exercise the multiplier>1 case.
QuantizedMulOpModel m({tensor_type, {1, 2, 2, 1}, -100, 100},
{tensor_type, {1, 2, 2, 1}, -100, 100},
{tensor_type, {}, -10, 10},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<integer_dtype>(m.input1(), {-4, 2, 3, 1});
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {-1, -3, 4, 2});
m.Invoke();
// Note the large tolerance. This computation is inherently inaccurate.
const float kTolerance = 1.4f;
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear({4, -6, 10, 2}, kTolerance)));
}
TEST(QuantizedMulOpTest, NoActivationUInt8) {
NoActivation<TensorType_UINT8, uint8_t>();
NoActivationLargeMultiplier<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedMulOpTest, NoActivationInt8) {
NoActivation<TensorType_INT8, int8_t>();
NoActivationLargeMultiplier<TensorType_INT8, int8_t>();
}
TEST(QuantizedMulOpTest, NoActivationInt16) {
const float kMin = -1.f;
const float kMax = 32767.f / 32768.f;
QuantizedMulOpModel m({TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
{TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
{TensorType_INT16, {}, kMin, kMax},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<int16_t>(m.input1(), {-0.8, 0.2, 0.9, 0.7});
m.QuantizeAndPopulate<int16_t>(m.input2(), {0.6, 0.4, 0.9, 0.8});
m.Invoke();
EXPECT_THAT(m.GetDequantizedOutputInt16(),
ElementsAreArray(ArrayFloatNear({-0.48, 0.08, 0.81, 0.56},
kQuantizedToleranceInt16)));
}
TEST(QuantizedMulOpTest, NoActivationInt16Scaled) {
const float kMin = -2.f;
const float kMax = 2.f * 32767.f / 32768.f;
QuantizedMulOpModel m({TensorType_INT16, {1, 2, 3, 1}, kMin, kMax},
{TensorType_INT16, {1, 2, 3, 1}, 2 * kMin, 2 * kMax},
{TensorType_INT16, {}, 8 * kMin, 8 * kMax},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<int16_t>(m.input1(), {-1.8, 0.2, 0.9, 1.7, 0.1, -1.95});
m.QuantizeAndPopulate<int16_t>(m.input2(),
{3.6, -3.4, 3.9, 0.8, -1.0, -3.95});
m.Invoke();
const float kQuantizedToleranceInt16Scaled =
6.0 * kQuantizedStepInt16 + kQuantizedStepInt16 * kQuantizedStepInt16;
EXPECT_THAT(
m.GetDequantizedOutputInt16(),
ElementsAreArray(ArrayFloatNear({-6.48, -0.68, 3.51, 1.36, -0.1, 7.7025},
kQuantizedToleranceInt16Scaled)));
}
template <TensorType tensor_type, typename integer_dtype>
void NoActivationInt16With8BitOutput() {
const float kMinInt16 = -1.f;
const float kMaxInt16 = 32767.f / 32768.f;
const float kMinUint8 = -1.f;
const float kMaxUint8 = 127.f / 128.f;
QuantizedMulOpModel m({TensorType_INT16, {1, 2, 2, 1}, kMinInt16, kMaxInt16},
{TensorType_INT16, {1, 2, 2, 1}, kMinInt16, kMaxInt16},
{tensor_type, {}, kMinUint8, kMaxUint8},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<int16_t>(m.input1(), {-0.8, 0.2, 0.9, 0.7});
m.QuantizeAndPopulate<int16_t>(m.input2(), {0.6, 0.4, 0.9, 0.8});
m.Invoke();
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear({-0.48, 0.08, 0.81, 0.56},
kQuantizedTolerance)));
}
TEST(QuantizedMulOpTest, NoActivationInt16WithUint8Output) {
NoActivationInt16With8BitOutput<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedMulOpTest, NoActivationInt16Withint8Output) {
NoActivationInt16With8BitOutput<TensorType_INT8, int8_t>();
}
// for quantized Mul, the error shouldn't exceed 2*step
float GetTolerance(int min, int max) {
float kQuantizedStep = (max - min) / 255.0;
float kQuantizedTolerance = 2.0 * kQuantizedStep;
return kQuantizedTolerance;
}
template <TensorType tensor_type, typename integer_dtype>
void WithBroadcast() {
float kQuantizedTolerance = GetTolerance(-3.0, 3.0);
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
QuantizedMulOpModel m({tensor_type, test_shapes[i], -3.0, 3.0},
{tensor_type, {}, -3.0, 3.0}, // always a scalar
{tensor_type, {}, -3.0, 3.0},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<integer_dtype>(m.input1(),
{-2.0, 0.2, 0.7, 0.8, 1.1, 2.0});
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {0.1});
m.Invoke();
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear(
{-0.2, 0.02, 0.07, 0.08, 0.11, 0.2}, kQuantizedTolerance)))
<< "With shape number " << i;
}
}
template <enum TensorType tensor_type, typename integer_dtype>
void QuantizedWithMixedBroadcast() {
float kQuantizedTolerance = GetTolerance(-3.f, 3.f);
const std::vector<int> base_shape = {2, 3, 1, 2};
std::vector<std::vector<int>> test_shapes = {
{1, 1, 3, 2}, {1, 3, 1, 2}, {2, 1, 3, 1}, {2, 3, 1, 1}};
std::vector<std::vector<float>> test_outputs = {
{-0.06f, 0.69f, 0.12f, 1.15f, -0.30f, 2.07f, 0.18f, 0.15f, -0.36f,
0.25f, 0.90f, 0.45f, 0.16f, -0.33f, -0.32f, -0.55f, 0.80f, -0.99f,
0.24f, 0.84f, -0.48f, 1.40f, 1.20f, 2.52f, -0.32f, 0.00f, 0.64f,
0.00f, -1.60f, 0.00f, 0.14f, -0.66f, -0.28f, -1.10f, 0.70f, -1.98f},
{-0.06f, 0.69f, -0.36f, 0.25f, 0.80f, -0.99f, 0.24f, 0.84f, 0.64f, 0.00f,
0.70f, -1.98f},
{-0.06f, 0.46f, -0.09f, 0.69f, 0.12f, -0.92f, 0.18f, 0.10f, 0.27f,
0.15f, -0.36f, -0.20f, 0.16f, -0.22f, 0.24f, -0.33f, -0.32f, 0.44f,
0.60f, 1.40f, 1.20f, 2.80f, 1.08f, 2.52f, -0.80f, 0.00f, -1.60f,
0.00f, -1.44f, 0.00f, 0.35f, -1.10f, 0.70f, -2.20f, 0.63f, -1.98f},
{-0.06f, 0.46f, 0.27f, 0.15f, -0.32f, 0.44f, 0.60f, 1.40f, -1.60f, 0.00f,
0.63f, -1.98f}};
for (size_t i = 0; i < test_shapes.size(); ++i) {
QuantizedMulOpModel model_fixture({tensor_type, base_shape, -3.f, 3.f},
{tensor_type, test_shapes[i], -3.f, 3.f},
{tensor_type, {}, -3.f, 3.f},
ActivationFunctionType_NONE);
model_fixture.QuantizeAndPopulate<integer_dtype>(
model_fixture.input1(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
model_fixture.QuantizeAndPopulate<integer_dtype>(
model_fixture.input2(), {0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
model_fixture.Invoke();
EXPECT_THAT(
model_fixture.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear(test_outputs[i], kQuantizedTolerance)))
<< "With shape number " << i;
}
// Re-run with exchanged inputs.
for (size_t i = 0; i < test_shapes.size(); ++i) {
QuantizedMulOpModel model_fixture({tensor_type, test_shapes[i], -3.f, 3.f},
{tensor_type, base_shape, -3.f, 3.f},
{tensor_type, {}, -3.f, 3.f},
ActivationFunctionType_NONE);
model_fixture.QuantizeAndPopulate<integer_dtype>(
model_fixture.input1(), {0.2f, 0.3f, -0.4f, 0.5f, 1.0f, 0.9f});
model_fixture.QuantizeAndPopulate<integer_dtype>(
model_fixture.input2(), {-0.3f, 2.3f, 0.9f, 0.5f, 0.8f, -1.1f, 1.2f,
2.8f, -1.6f, 0.0f, 0.7f, -2.2f});
model_fixture.Invoke();
EXPECT_THAT(
model_fixture.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear(test_outputs[i], kQuantizedTolerance)))
<< "With shape number " << i;
}
}
TEST(QuantizedMulOpTest, WithBroadcastUInt8) {
WithBroadcast<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedMulOpTest, WithBroadcastInt8) {
WithBroadcast<TensorType_INT8, int8_t>();
}
TEST(QuantizedMulOpTest, QuantizedWithMixedBroadcastUInt8) {
QuantizedWithMixedBroadcast<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedMulOpTest, QuantizedWithMixedBroadcastInt8) {
QuantizedWithMixedBroadcast<TensorType_INT8, int8_t>();
}
} // namespace
} // namespace tflite