92 lines
3.6 KiB
C++
92 lines
3.6 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_
|
|
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/common.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
|
|
namespace tflite {
|
|
|
|
namespace reference_ops {
|
|
|
|
inline void L2Normalization(const tflite::L2NormalizationParams& op_params,
|
|
const RuntimeShape& input_shape,
|
|
const float* input_data,
|
|
const RuntimeShape& output_shape,
|
|
float* output_data, float epsilon = 1e-6) {
|
|
const int trailing_dim = input_shape.DimensionsCount() - 1;
|
|
const int outer_size =
|
|
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
|
|
const int depth =
|
|
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
|
|
for (int i = 0; i < outer_size; ++i) {
|
|
float squared_l2_norm = 0;
|
|
for (int c = 0; c < depth; ++c) {
|
|
const float val = input_data[depth * i + c];
|
|
squared_l2_norm += val * val;
|
|
}
|
|
float l2_norm = std::sqrt(squared_l2_norm);
|
|
l2_norm = std::max(l2_norm, epsilon);
|
|
for (int c = 0; c < depth; ++c) {
|
|
output_data[depth * i + c] = input_data[depth * i + c] / l2_norm;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void L2Normalization(const tflite::L2NormalizationParams& op_params,
|
|
const RuntimeShape& input_shape,
|
|
const uint8* input_data,
|
|
const RuntimeShape& output_shape,
|
|
uint8* output_data) {
|
|
const int trailing_dim = input_shape.DimensionsCount() - 1;
|
|
const int depth =
|
|
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
|
|
const int outer_size =
|
|
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
|
|
const int32 input_zero_point = op_params.input_zero_point;
|
|
|
|
for (int i = 0; i < outer_size; ++i) {
|
|
int32 square_l2_norm = 0;
|
|
for (int c = 0; c < depth; c++) {
|
|
int32 diff = input_data[depth * i + c] - input_zero_point;
|
|
square_l2_norm += diff * diff;
|
|
}
|
|
int32 inv_l2norm_multiplier;
|
|
int inv_l2norm_shift;
|
|
GetInvSqrtQuantizedMultiplierExp(square_l2_norm, kReverseShift,
|
|
&inv_l2norm_multiplier, &inv_l2norm_shift);
|
|
for (int c = 0; c < depth; c++) {
|
|
int32 diff = input_data[depth * i + c] - input_zero_point;
|
|
int32 rescaled_diff = MultiplyByQuantizedMultiplierSmallerThanOneExp(
|
|
128 * diff, inv_l2norm_multiplier, inv_l2norm_shift);
|
|
int32 unclamped_output_val = 128 + rescaled_diff;
|
|
int32 output_val =
|
|
std::min(static_cast<int32>(255),
|
|
std::max(static_cast<int32>(0), unclamped_output_val));
|
|
output_data[depth * i + c] = static_cast<uint8>(output_val);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
} // namespace reference_ops
|
|
} // namespace tflite
|
|
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_
|