STT-tensorflow/tensorflow/lite/kernels/gather_test.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

316 lines
10 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <initializer_list>
#include <string>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/string_type.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
class GatherOpModel : public SingleOpModel {
public:
GatherOpModel(const TensorData& input, const TensorData& positions,
int axis = 0) {
input_ = AddInput(input);
positions_ = AddInput(positions);
output_ = AddOutput(input.type);
SetBuiltinOp(BuiltinOperator_GATHER, BuiltinOptions_GatherOptions,
CreateGatherOptions(builder_, axis).Union());
BuildInterpreter({GetShape(input_), GetShape(positions_)});
}
template <typename T>
void SetInput(std::initializer_list<T> data) {
PopulateTensor<T>(input_, data);
}
void SetStringInput(std::initializer_list<string> data) {
PopulateStringTensor(input_, data);
}
template <typename T>
void SetPositions(std::initializer_list<T> data) {
PopulateTensor<T>(positions_, data);
}
template <typename T>
std::vector<T> GetOutput() {
return ExtractVector<T>(output_);
}
std::vector<string> GetStringOutput() {
return ExtractVector<string>(output_);
}
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
protected:
int input_;
int positions_;
int output_;
};
TEST(GatherOpTest, Shuffle) {
GatherOpModel m({TensorType_FLOAT32, {2, 2}}, {TensorType_INT32, {2}});
m.SetInput<float>({-2.0, 0.2, 0.7, 0.8});
m.SetPositions<int32_t>({1, 0});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear({0.7, 0.8, -2, 0.2})));
}
TEST(GatherOpTest, Test0DIndex) {
GatherOpModel m({TensorType_FLOAT32, {2, 2}}, {TensorType_INT32, {}});
m.SetInput<float>({-2.0, 0.2, 0.7, 0.8});
m.SetPositions<int32_t>({1});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear({0.7, 0.8})));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2}));
}
TEST(GatherOpTest, Test0DIndexWith0DResult) {
// 0D tensor is special case in current TFLite. Test it once to make sure
// existing workarounds are fine with it.
GatherOpModel m({TensorType_FLOAT32, {3}}, {TensorType_INT32, {}});
m.SetInput<float>({1.0, 2.0, 3.0});
m.SetPositions<int32_t>({1});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(), ElementsAreArray(ArrayFloatNear({2.0})));
EXPECT_TRUE(m.GetOutputShape().empty());
}
TEST(GatherOpTest, Test1DInput1DIndex) {
GatherOpModel m({TensorType_FLOAT32, {3}}, {TensorType_INT32, {1}});
m.SetInput<float>({1.0, 3.0, 5.0});
m.SetPositions<int32_t>({1});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(), ElementsAreArray(ArrayFloatNear({3.0})));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1}));
}
TEST(GatherOpTest, Test2DIndexWith2DResult) {
GatherOpModel m({TensorType_FLOAT32, {3}}, {TensorType_INT32, {1, 2}});
m.SetInput<float>({1.0, 2.0, 3.0});
m.SetPositions<int32_t>({1, 0});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear({2.0, 1.0})));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2}));
}
TEST(FloatGatherOpTest, Duplicate) {
GatherOpModel m({TensorType_FLOAT32, {1, 2, 2}}, {TensorType_INT32, {2}});
m.SetInput<float>({-2.0, 0.2, 0.7, 0.8});
m.SetPositions<int32_t>({0, 0});
m.Invoke();
EXPECT_THAT(
m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear({-2, 0.2, 0.7, 0.8, -2, 0.2, 0.7, 0.8})));
}
TEST(FloatGatherOpTest, Slice) {
GatherOpModel m({TensorType_FLOAT32, {4, 1}}, {TensorType_INT32, {2}});
m.SetInput<float>({-2.0, 0.2, 0.7, 0.8});
m.SetPositions<int32_t>({1, 3});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear({0.2, 0.8})));
}
TEST(FloatGatherOpTest, Axis1) {
const int axis = 1;
GatherOpModel m({TensorType_FLOAT32, {1, 2, 3}}, {TensorType_INT32, {2}},
axis);
m.SetInput<float>({1, 2, 3, 4, 5, 6});
m.SetPositions<int32_t>({1, 0});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear({4, 5, 6, 1, 2, 3})));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 3}));
}
TEST(FloatGatherOpTest, Axis10DIndex) {
const int axis = 1;
GatherOpModel m({TensorType_FLOAT32, {1, 3, 2}}, {TensorType_INT32, {}},
axis);
m.SetInput<float>({1, 2, 3, 4, 5, 6});
m.SetPositions<int32_t>({1});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(), ElementsAreArray(ArrayFloatNear({3, 4})));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2}));
}
TEST(FloatGatherOpTest, Axis1Slice) {
const int axis = 1;
GatherOpModel m({TensorType_FLOAT32, {1, 4, 2}}, {TensorType_INT32, {2}},
axis);
m.SetInput<float>({1, 2, 3, 4, 5, 6, 7, 8});
m.SetPositions<int32_t>({3, 1});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear({7, 8, 3, 4})));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 2}));
}
TEST(FloatGatherOpTest, LastAxis) {
const int axis = -1;
GatherOpModel m({TensorType_FLOAT32, {1, 2, 3}}, {TensorType_INT32, {2}},
axis);
m.SetInput<float>({1, 2, 3, 4, 5, 6});
m.SetPositions<int32_t>({2, 0});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray(ArrayFloatNear({3, 1, 6, 4})));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 2}));
}
TEST(FloatGatherOpTest, LastAxis0DIndex) {
const int axis = -1;
GatherOpModel m({TensorType_FLOAT32, {1, 2, 3}}, {TensorType_INT32, {}},
axis);
m.SetInput<float>({1, 2, 3, 4, 5, 6});
m.SetPositions<int32_t>({2});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(), ElementsAreArray(ArrayFloatNear({3, 6})));
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2}));
}
TEST(TypesGatherOpTest, Float32Int32) {
GatherOpModel m({TensorType_FLOAT32, {2, 2}}, {TensorType_INT32, {2}});
m.SetInput<float>({13.3, -13.4, -1.4, 1.5});
m.SetPositions<int32_t>({1, 0});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(), ElementsAreArray({-1.4, 1.5, 13.3, -13.4}));
}
TEST(TypesGatherOpTest, Float32Int64) {
GatherOpModel m({TensorType_FLOAT32, {2, 2}}, {TensorType_INT64, {2}});
m.SetInput<float>({13.3, -13.4, -1.4, 1.5});
m.SetPositions<int64_t>({1LL, 0LL});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(), ElementsAreArray({-1.4, 1.5, 13.3, -13.4}));
}
TEST(TypesGatherOpTest, Int32Int32) {
GatherOpModel m({TensorType_INT32, {2, 2}}, {TensorType_INT32, {2}});
m.SetInput<int32_t>({-1330, 1340, 140, -150});
m.SetPositions<int32_t>({1, 0});
m.Invoke();
EXPECT_THAT(m.GetOutput<int32_t>(),
ElementsAreArray({140, -150, -1330, 1340}));
}
TEST(TypesGatherOpTest, Int32Int64) {
GatherOpModel m({TensorType_INT32, {2, 2}}, {TensorType_INT64, {2}});
m.SetInput<int32_t>({-1330, 1340, 140, -150});
m.SetPositions<int64_t>({1LL, 0LL});
m.Invoke();
EXPECT_THAT(m.GetOutput<int32_t>(),
ElementsAreArray({140, -150, -1330, 1340}));
}
TEST(TypesGatherOpTest, Uint8Int32) {
GatherOpModel m({TensorType_UINT8, {2, 2}}, {TensorType_INT32, {2}});
m.SetInput<uint8_t>({133, 134, 14, 15});
m.SetPositions<int32_t>({1, 0});
m.Invoke();
EXPECT_THAT(m.GetOutput<uint8_t>(), ElementsAreArray({14, 15, 133, 134}));
}
TEST(TypesGatherOpTest, Uint8Int64) {
GatherOpModel m({TensorType_UINT8, {2, 2}}, {TensorType_INT64, {2}});
m.SetInput<uint8_t>({133, 134, 14, 15});
m.SetPositions<int64_t>({1LL, 0LL});
m.Invoke();
EXPECT_THAT(m.GetOutput<uint8_t>(), ElementsAreArray({14, 15, 133, 134}));
}
TEST(TypesGatherOpTest, Int8Int32) {
GatherOpModel m({TensorType_INT8, {2, 2}}, {TensorType_INT32, {2}});
m.SetInput<int8_t>({-13, -120, 14, 15});
m.SetPositions<int32_t>({1, 0});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(), ElementsAreArray({14, 15, -13, -120}));
}
TEST(TypesGatherOpTest, Int8Int64) {
GatherOpModel m({TensorType_INT8, {2, 2}}, {TensorType_INT64, {2}});
m.SetInput<int8_t>({-13, -120, 14, 15});
m.SetPositions<int64_t>({1LL, 0LL});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(), ElementsAreArray({14, 15, -13, -120}));
}
TEST(TypesGatherOpTest, Int64Int32) {
GatherOpModel m({TensorType_INT64, {2, 2}}, {TensorType_INT32, {2}});
m.SetInput<int64_t>({-(1LL << 34), 134LL, 14LL, 15LL});
m.SetPositions<int32_t>({1, 0});
m.Invoke();
EXPECT_THAT(m.GetOutput<int64_t>(),
ElementsAreArray({14LL, 15LL, -(1LL << 34), 134LL}));
}
TEST(TypesGatherOpTest, Int64Int64) {
GatherOpModel m({TensorType_INT64, {2, 2}}, {TensorType_INT64, {2}});
m.SetInput<int64_t>({-(1LL << 34), 134LL, 14LL, 15LL});
m.SetPositions<int64_t>({1LL, 0LL});
m.Invoke();
EXPECT_THAT(m.GetOutput<int64_t>(),
ElementsAreArray({14LL, 15LL, -(1LL << 34), 134LL}));
}
TEST(GatherOpTest, SimpleString) {
GatherOpModel m({TensorType_STRING, {3}}, {TensorType_INT32, {2}});
m.SetStringInput({"A", "B", "C"});
m.SetPositions<int32_t>({0, 2});
m.Invoke();
ASSERT_THAT(m.GetOutputShape(), ElementsAreArray({2}));
EXPECT_THAT(m.GetStringOutput(), ElementsAreArray({"A", "C"}));
}
TEST(GatherOpTest, 2DIndexString) {
GatherOpModel m({TensorType_STRING, {3}}, {TensorType_INT32, {2, 3}});
m.SetStringInput({"A", "B", "C"});
m.SetPositions<int32_t>({0, 2, 1, 1, 0, 2});
m.Invoke();
ASSERT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3}));
EXPECT_THAT(m.GetStringOutput(),
ElementsAreArray({"A", "C", "B", "B", "A", "C"}));
}
} // namespace
} // namespace tflite