311 lines
12 KiB
C++
311 lines
12 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stdint.h>
|
|
|
|
#include <vector>
|
|
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
class BaseDivOpModel : public SingleOpModel {
|
|
public:
|
|
BaseDivOpModel(const TensorData& input1, const TensorData& input2,
|
|
const TensorData& output,
|
|
ActivationFunctionType activation_type) {
|
|
input1_ = AddInput(input1);
|
|
input2_ = AddInput(input2);
|
|
output_ = AddOutput(output);
|
|
SetBuiltinOp(BuiltinOperator_DIV, BuiltinOptions_DivOptions,
|
|
CreateDivOptions(builder_, activation_type).Union());
|
|
BuildInterpreter({GetShape(input1_), GetShape(input2_)});
|
|
}
|
|
|
|
int input1() { return input1_; }
|
|
int input2() { return input2_; }
|
|
|
|
protected:
|
|
int input1_;
|
|
int input2_;
|
|
int output_;
|
|
};
|
|
|
|
class FloatDivOpModel : public BaseDivOpModel {
|
|
public:
|
|
using BaseDivOpModel::BaseDivOpModel;
|
|
|
|
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
|
|
};
|
|
|
|
class IntegerDivOpModel : public BaseDivOpModel {
|
|
public:
|
|
using BaseDivOpModel::BaseDivOpModel;
|
|
|
|
std::vector<int32_t> GetOutput() { return ExtractVector<int32_t>(output_); }
|
|
};
|
|
|
|
class QuantizedDivOpModel : public BaseDivOpModel {
|
|
public:
|
|
using BaseDivOpModel::BaseDivOpModel;
|
|
|
|
template <typename integer_dtype>
|
|
std::vector<float> GetDequantizedOutput() {
|
|
return Dequantize<integer_dtype>(ExtractVector<integer_dtype>(output_),
|
|
GetScale(output_), GetZeroPoint(output_));
|
|
}
|
|
};
|
|
|
|
// For quantized Div, the error shouldn't exceed (2*step + step^2).
|
|
inline float GetTolerance(int min, int max) {
|
|
const float kQuantizedStep = (max - min) / 255.0f;
|
|
const float kQuantizedTolerance =
|
|
2.0f * kQuantizedStep + kQuantizedStep * kQuantizedStep;
|
|
return kQuantizedTolerance;
|
|
}
|
|
|
|
TEST(FloatDivOpTest, NoActivation) {
|
|
FloatDivOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<float>(m.input1(), {-0.2, 0.2, -1.2, 0.8});
|
|
m.PopulateTensor<float>(m.input2(), {0.5, 0.2, -1.5, 0.5});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear({-0.4, 1.0, 0.8, 1.6})));
|
|
}
|
|
|
|
TEST(FloatDivOpTest, ActivationRELU_N1_TO_1) {
|
|
FloatDivOpModel m(
|
|
{TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_RELU_N1_TO_1);
|
|
m.PopulateTensor<float>(m.input1(), {-0.2, 0.2, -1.2, 0.8});
|
|
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, -1.5, 0.5});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear({-1.0, 1.0, 0.8, 1.0})));
|
|
}
|
|
|
|
TEST(FloatDivOpTest, VariousInputShapes) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
FloatDivOpModel m({TensorType_FLOAT32, test_shapes[i]},
|
|
{TensorType_FLOAT32, test_shapes[i]},
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 0.3, 0.8, 1.1, -2.0});
|
|
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.6, 0.5, -1.1, -0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear({-20.0, 1.0, 0.5, 1.6, -1.0, 20.0})))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(FloatDivOpTest, WithBroadcast) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{8}, {2, 4}, {2, 1, 4}, {1, 2, 2, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
FloatDivOpModel m({TensorType_FLOAT32, test_shapes[i]},
|
|
{TensorType_FLOAT32, {}}, // always a scalar
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<float>(m.input1(),
|
|
{-0.2, 0.2, 0.07, 0.08, 0.11, -0.123, -0.32, 0.54});
|
|
m.PopulateTensor<float>(m.input2(), {0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear(
|
|
{-2.0, 2.0, 0.7, 0.8, 1.1, -1.23, -3.2, 5.4})))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(FloatDivOpTest, WithBroadcast5D) {
|
|
std::vector<std::vector<int>> test_shapes = {{1, 2, 1, 2, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
FloatDivOpModel m({TensorType_FLOAT32, test_shapes[i]},
|
|
{TensorType_FLOAT32, {}}, // always a scalar
|
|
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<float>(m.input1(),
|
|
{-0.2, 0.2, 0.07, 0.08, 0.11, -0.123, -0.32, 0.54});
|
|
m.PopulateTensor<float>(m.input2(), {0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear(
|
|
{-2.0, 2.0, 0.7, 0.8, 1.1, -1.23, -3.2, 5.4})))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(IntegerDivOpTest, NoActivation) {
|
|
IntegerDivOpModel m({TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
|
|
ActivationFunctionType_NONE);
|
|
m.PopulateTensor<int32_t>(m.input1(), {-2, 2, -15, 8});
|
|
m.PopulateTensor<int32_t>(m.input2(), {5, -2, -3, 5});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({0, -1, 5, 1}));
|
|
}
|
|
|
|
TEST(IntegerDivOpTest, ActivationRELU_N1_TO_1) {
|
|
IntegerDivOpModel m({TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
|
|
ActivationFunctionType_RELU_N1_TO_1);
|
|
m.PopulateTensor<int32_t>(m.input1(), {-2, 2, -12, 8});
|
|
m.PopulateTensor<int32_t>(m.input2(), {1, 2, -15, 5});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1, 1, 0, 1}));
|
|
}
|
|
|
|
TEST(IntegerDivOpTest, VariousInputShapes) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
IntegerDivOpModel m({TensorType_INT32, test_shapes[i]},
|
|
{TensorType_INT32, test_shapes[i]},
|
|
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 3, 8, 11, -20});
|
|
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 6, 5, -11, -1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-20, 1, 0, 1, -1, 20}))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(IntegerDivOpTest, WithBroadcast) {
|
|
std::vector<std::vector<int>> test_shapes = {
|
|
{8}, {2, 4}, {2, 1, 4}, {1, 4, 1, 2}, {1, 2, 1, 2, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
IntegerDivOpModel m({TensorType_INT32, test_shapes[i]},
|
|
{TensorType_INT32, {}}, // always a scalar
|
|
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
|
|
m.PopulateTensor<int32_t>(m.input1(), {-20, 21, 7, 8, 11, -123, -42, -48});
|
|
m.PopulateTensor<int32_t>(m.input2(), {3});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput(),
|
|
ElementsAreArray({-6, 7, 2, 2, 3, -41, -14, -16}))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
template <TensorType tensor_type, typename integer_dtype>
|
|
void QuantizedNoActivation() {
|
|
const float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
|
|
QuantizedDivOpModel m({tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
|
{tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
|
{tensor_type, {}, -1.0, 1.0},
|
|
ActivationFunctionType_NONE);
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input1(), {-0.8, -0.2, 0.3, 0.7});
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {-0.8, 0.4, 0.8, 1.0});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear({1.0, -0.5, 0.375, 0.7},
|
|
kQuantizedTolerance)));
|
|
}
|
|
|
|
TEST(QuantizedDivOpTest, QuantizedNoActivationUInt8) {
|
|
QuantizedNoActivation<TensorType_UINT8, uint8_t>();
|
|
}
|
|
|
|
template <TensorType tensor_type, typename integer_dtype>
|
|
void QuantizedActivationRELU_N1_TO_1() {
|
|
const float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
|
|
const std::vector<std::vector<float>> inputs1 = {{-0.8, 0.2, 0.9, 0.7},
|
|
{-0.5, 0.2, 0.6, 0.3}};
|
|
const std::vector<std::vector<float>> inputs2 = {{0.6, 0.4, 0.9, -0.8},
|
|
{0.6, 0.5, -0.8, 0.5}};
|
|
const std::vector<std::vector<float>> results = {{-1.0, 0.5, 1.0, -0.875},
|
|
{-0.833, 0.4, -0.75, 0.6}};
|
|
for (int i = 0; i < inputs1.size(); ++i) {
|
|
QuantizedDivOpModel m({tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
|
{tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
|
|
{tensor_type, {}, -1.0, 1.0},
|
|
ActivationFunctionType_RELU_N1_TO_1);
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input1(), inputs1[i]);
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input2(), inputs2[i]);
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear(results[i], kQuantizedTolerance)))
|
|
<< "With test number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(QuantizedDivOpTest, QuantizedActivationRELU_N1_TO_1UInt8) {
|
|
QuantizedActivationRELU_N1_TO_1<TensorType_UINT8, uint8_t>();
|
|
}
|
|
|
|
template <TensorType tensor_type, typename integer_dtype>
|
|
void QuantizedVariousInputShapes() {
|
|
const float kQuantizedTolerance = GetTolerance(-3.0, 3.0);
|
|
const std::vector<std::vector<int>> test_shapes = {
|
|
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
QuantizedDivOpModel m({tensor_type, test_shapes[i], -3.0, 3.0},
|
|
{tensor_type, test_shapes[i], -3.0, 3.0},
|
|
{tensor_type, {}, -3.0, 3.0},
|
|
ActivationFunctionType_NONE);
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input1(),
|
|
{-2.0, 0.2, 1.7, 0.9, 0.4, 2.0});
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input2(),
|
|
{1.3, 0.3, 1.1, 0.4, -1.1, 1.9});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear(
|
|
{-1.538, 0.667, 1.545, 2.25, -0.364, 1.053}, kQuantizedTolerance)))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(QuantizedDivOpTest, QuantizedVariousInputShapesUInt8) {
|
|
QuantizedVariousInputShapes<TensorType_UINT8, uint8_t>();
|
|
}
|
|
|
|
template <TensorType tensor_type, typename integer_dtype>
|
|
void QuantizedWithBroadcast() {
|
|
const float kQuantizedTolerance = GetTolerance(-3.0, 3.0);
|
|
const std::vector<std::vector<int>> test_shapes = {
|
|
{8}, {2, 4}, {2, 1, 4}, {1, 4, 1, 2}, {1, 2, 1, 2, 2}};
|
|
for (int i = 0; i < test_shapes.size(); ++i) {
|
|
QuantizedDivOpModel m(
|
|
{tensor_type, test_shapes[i], -3.0, 3.0}, {tensor_type, {}, -3.0, 3.0},
|
|
{tensor_type, {}, -3.0, 3.0}, ActivationFunctionType_NONE);
|
|
m.QuantizeAndPopulate<integer_dtype>(
|
|
m.input1(), {-2.0, 0.2, 0.7, 0.8, -0.5, 1.1, -1.3, 1.2});
|
|
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {0.7});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
|
|
ElementsAreArray(ArrayFloatNear(
|
|
{-2.857, 0.286, 1.0, 1.143, -0.714, 1.571, -1.857, 1.714},
|
|
kQuantizedTolerance)))
|
|
<< "With shape number " << i;
|
|
}
|
|
}
|
|
|
|
TEST(QuantizedDivOpTest, QuantizedWithBroadcastUInt8) {
|
|
QuantizedWithBroadcast<TensorType_UINT8, uint8_t>();
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|