STT-tensorflow/tensorflow/lite/kernels/detection_postprocess_test.cc
Sachin Joglekar 30357d1d9b Improve floating-point NMS tests to use smaller error thresholds
PiperOrigin-RevId: 316717898
Change-Id: Iab097dcf4ac3feca17c6d54ad84a2437341d0bb3
2020-06-16 11:12:14 -07:00

799 lines
29 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <initializer_list>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "flatbuffers/flexbuffers.h" // from @flatbuffers
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace ops {
namespace custom {
TfLiteRegistration* Register_DETECTION_POSTPROCESS();
namespace {
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
// Tests for scenarios where we DO NOT set use_regular_nms flag
class BaseDetectionPostprocessOpModel : public SingleOpModel {
public:
BaseDetectionPostprocessOpModel(const TensorData& input1,
const TensorData& input2,
const TensorData& input3,
const TensorData& output1,
const TensorData& output2,
const TensorData& output3,
const TensorData& output4) {
input1_ = AddInput(input1);
input2_ = AddInput(input2);
input3_ = AddInput(input3);
output1_ = AddOutput(output1);
output2_ = AddOutput(output2);
output3_ = AddOutput(output3);
output4_ = AddOutput(output4);
flexbuffers::Builder fbb;
fbb.Map([&]() {
fbb.Int("max_detections", 3);
fbb.Int("max_classes_per_detection", 1);
fbb.Float("nms_score_threshold", 0.0);
fbb.Float("nms_iou_threshold", 0.5);
fbb.Int("num_classes", 2);
fbb.Float("y_scale", 10.0);
fbb.Float("x_scale", 10.0);
fbb.Float("h_scale", 5.0);
fbb.Float("w_scale", 5.0);
});
fbb.Finish();
SetCustomOp("TFLite_Detection_PostProcess", fbb.GetBuffer(),
Register_DETECTION_POSTPROCESS);
BuildInterpreter({GetShape(input1_), GetShape(input2_), GetShape(input3_)});
}
int input1() { return input1_; }
int input2() { return input2_; }
int input3() { return input3_; }
template <class T>
void SetInput1(std::initializer_list<T> data) {
PopulateTensor<T>(input1_, data);
}
template <class T>
void SetInput2(std::initializer_list<T> data) {
PopulateTensor<T>(input2_, data);
}
template <class T>
void SetInput3(std::initializer_list<T> data) {
PopulateTensor<T>(input3_, data);
}
template <class T>
std::vector<T> GetOutput1() {
return ExtractVector<T>(output1_);
}
template <class T>
std::vector<T> GetOutput2() {
return ExtractVector<T>(output2_);
}
template <class T>
std::vector<T> GetOutput3() {
return ExtractVector<T>(output3_);
}
template <class T>
std::vector<T> GetOutput4() {
return ExtractVector<T>(output4_);
}
std::vector<int> GetOutputShape1() { return GetTensorShape(output1_); }
std::vector<int> GetOutputShape2() { return GetTensorShape(output2_); }
std::vector<int> GetOutputShape3() { return GetTensorShape(output3_); }
std::vector<int> GetOutputShape4() { return GetTensorShape(output4_); }
protected:
int input1_;
int input2_;
int input3_;
int output1_;
int output2_;
int output3_;
int output4_;
};
TEST(DetectionPostprocessOpTest, FloatTest) {
BaseDetectionPostprocessOpModel m(
{TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 3}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}});
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
});
// class scores - two classes with background
m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0.,
.5, .4, 0., .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
// Same boxes in box-corner encoding:
// { 0.0, 0.0, 1.0, 1.0,
// 0.0, 0.1, 1.0, 1.1,
// 0.0, -0.1, 1.0, 0.9,
// 0.0, 10.0, 1.0, 11.0,
// 0.0, 10.1, 1.0, 11.1,
// 0.0, 100.0, 1.0, 101.0}
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
1e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-4)));
}
TEST(DetectionPostprocessOpTest, QuantizedTest) {
BaseDetectionPostprocessOpModel m(
{TensorType_UINT8, {1, 6, 4}, -1.0, 1.0},
{TensorType_UINT8, {1, 6, 3}, 0.0, 1.0},
{TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}});
// six boxes in center-size encoding
std::vector<std::vector<float>> inputs1 = {{
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]);
// class scores - two classes with background
std::vector<std::vector<float>> inputs2 = {{0., .9, .8, 0., .75, .72, 0., .6,
.5, 0., .93, .95, 0., .5, .4, 0.,
.3, .2}};
m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]);
// six anchors in center-size encoding
std::vector<std::vector<float>> inputs3 = {{
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]);
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
3e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-1)));
}
// Tests for scenarios where we set use_regular_nms flag
class DetectionPostprocessOpModelwithRegularNMS : public SingleOpModel {
public:
DetectionPostprocessOpModelwithRegularNMS(
const TensorData& input1, const TensorData& input2,
const TensorData& input3, const TensorData& output1,
const TensorData& output2, const TensorData& output3,
const TensorData& output4, bool use_regular_nms) {
input1_ = AddInput(input1);
input2_ = AddInput(input2);
input3_ = AddInput(input3);
output1_ = AddOutput(output1);
output2_ = AddOutput(output2);
output3_ = AddOutput(output3);
output4_ = AddOutput(output4);
flexbuffers::Builder fbb;
fbb.Map([&]() {
fbb.Int("max_detections", 3);
fbb.Int("max_classes_per_detection", 1);
fbb.Int("detections_per_class", 1);
fbb.Bool("use_regular_nms", use_regular_nms);
fbb.Float("nms_score_threshold", 0.0);
fbb.Float("nms_iou_threshold", 0.5);
fbb.Int("num_classes", 2);
fbb.Float("y_scale", 10.0);
fbb.Float("x_scale", 10.0);
fbb.Float("h_scale", 5.0);
fbb.Float("w_scale", 5.0);
});
fbb.Finish();
SetCustomOp("TFLite_Detection_PostProcess", fbb.GetBuffer(),
Register_DETECTION_POSTPROCESS);
BuildInterpreter({GetShape(input1_), GetShape(input2_), GetShape(input3_)});
}
int input1() { return input1_; }
int input2() { return input2_; }
int input3() { return input3_; }
template <class T>
void SetInput1(std::initializer_list<T> data) {
PopulateTensor<T>(input1_, data);
}
template <class T>
void SetInput2(std::initializer_list<T> data) {
PopulateTensor<T>(input2_, data);
}
template <class T>
void SetInput3(std::initializer_list<T> data) {
PopulateTensor<T>(input3_, data);
}
template <class T>
std::vector<T> GetOutput1() {
return ExtractVector<T>(output1_);
}
template <class T>
std::vector<T> GetOutput2() {
return ExtractVector<T>(output2_);
}
template <class T>
std::vector<T> GetOutput3() {
return ExtractVector<T>(output3_);
}
template <class T>
std::vector<T> GetOutput4() {
return ExtractVector<T>(output4_);
}
std::vector<int> GetOutputShape1() { return GetTensorShape(output1_); }
std::vector<int> GetOutputShape2() { return GetTensorShape(output2_); }
std::vector<int> GetOutputShape3() { return GetTensorShape(output3_); }
std::vector<int> GetOutputShape4() { return GetTensorShape(output4_); }
protected:
int input1_;
int input2_;
int input3_;
int output1_;
int output2_;
int output3_;
int output4_;
};
TEST(DetectionPostprocessOpTest, FloatTestFastNMS) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 3}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
});
// class scores - two classes with background
m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0.,
.5, .4, 0., .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
// Same boxes in box-corner encoding:
// { 0.0, 0.0, 1.0, 1.0,
// 0.0, 0.1, 1.0, 1.1,
// 0.0, -0.1, 1.0, 0.9,
// 0.0, 10.0, 1.0, 11.0,
// 0.0, 10.1, 1.0, 11.1,
// 0.0, 100.0, 1.0, 101.0}
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
1e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-4)));
}
TEST(DetectionPostprocessOpTest, QuantizedTestFastNMS) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_UINT8, {1, 6, 4}, -1.0, 1.0},
{TensorType_UINT8, {1, 6, 3}, 0.0, 1.0},
{TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
std::vector<std::vector<float>> inputs1 = {{
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]);
// class scores - two classes with background
std::vector<std::vector<float>> inputs2 = {{0., .9, .8, 0., .75, .72, 0., .6,
.5, 0., .93, .95, 0., .5, .4, 0.,
.3, .2}};
m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]);
// six anchors in center-size encoding
std::vector<std::vector<float>> inputs3 = {{
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]);
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
3e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-1)));
}
TEST(DetectionPostprocessOpTest, FloatTestRegularNMS) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 3}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, true);
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
});
// class scores - two classes with background
m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0.,
.5, .4, 0., .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear({0.0, 10.0, 1.0, 11.0, 0.0, 10.0,
1.0, 11.0, 0.0, 0.0, 0.0, 0.0},
3e-4)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.93, 0.0}, 1e-4)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({2.0}, 1e-4)));
}
TEST(DetectionPostprocessOpTest, QuantizedTestRegularNMS) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_UINT8, {1, 6, 4}, -1.0, 1.0},
{TensorType_UINT8, {1, 6, 3}, 0.0, 1.0},
{TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, true);
// six boxes in center-size encoding
std::vector<std::vector<float>> inputs1 = {{
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]);
// class scores - two classes with background
std::vector<std::vector<float>> inputs2 = {{0., .9, .8, 0., .75, .72, 0., .6,
.5, 0., .93, .95, 0., .5, .4, 0.,
.3, .2}};
m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]);
// six anchors in center-size encoding
std::vector<std::vector<float>> inputs3 = {{
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]);
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear({0.0, 10.0, 1.0, 11.0, 0.0, 10.0,
1.0, 11.0, 0.0, 0.0, 0.0, 0.0},
3e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.0}, 1e-1)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({2.0}, 1e-1)));
}
TEST(DetectionPostprocessOpTest, FloatTestwithNoBackgroundClassAndNoKeypoints) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_FLOAT32, {1, 6, 4}}, {TensorType_FLOAT32, {1, 6, 2}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, // box #1
0.0, 1.0, 0.0, 0.0, // box #2
0.0, -1.0, 0.0, 0.0, // box #3
0.0, 0.0, 0.0, 0.0, // box #4
0.0, 1.0, 0.0, 0.0, // box #5
0.0, 0.0, 0.0, 0.0 // box #6
});
// class scores - two classes without background
m.SetInput2<float>({.9, .8, .75, .72, .6, .5, .93, .95, .5, .4, .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
1e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-1)));
}
TEST(DetectionPostprocessOpTest, FloatTestwithBackgroundClassAndKeypoints) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_FLOAT32, {1, 6, 5}}, {TensorType_FLOAT32, {1, 6, 3}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, 1.0, // box #1
0.0, 1.0, 0.0, 0.0, 1.0, // box #2
0.0, -1.0, 0.0, 0.0, 1.0, // box #3
0.0, 0.0, 0.0, 0.0, 1.0, // box #4
0.0, 1.0, 0.0, 0.0, 1.0, // box #5
0.0, 0.0, 0.0, 0.0, 1.0, // box #6
});
// class scores - two classes with background
m.SetInput2<float>({0., .9, .8, 0., .75, .72, 0., .6, .5, 0., .93, .95, 0.,
.5, .4, 0., .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
1e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-4)));
}
TEST(DetectionPostprocessOpTest,
QuantizedTestwithNoBackgroundClassAndKeypoints) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_UINT8, {1, 6, 5}, -1.0, 1.0},
{TensorType_UINT8, {1, 6, 2}, 0.0, 1.0},
{TensorType_UINT8, {6, 4}, 0.0, 100.5}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
std::vector<std::vector<float>> inputs1 = {{
0.0, 0.0, 0.0, 0.0, 1.0, // box #1
0.0, 1.0, 0.0, 0.0, 1.0, // box #2
0.0, -1.0, 0.0, 0.0, 1.0, // box #3
0.0, 0.0, 0.0, 0.0, 1.0, // box #4
0.0, 1.0, 0.0, 0.0, 1.0, // box #5
0.0, 0.0, 0.0, 0.0, 1.0 // box #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input1(), inputs1[0]);
// class scores - two classes with background
std::vector<std::vector<float>> inputs2 = {
{.9, .8, .75, .72, .6, .5, .93, .95, .5, .4, .3, .2}};
m.QuantizeAndPopulate<uint8_t>(m.input2(), inputs2[0]);
// six anchors in center-size encoding
std::vector<std::vector<float>> inputs3 = {{
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
}};
m.QuantizeAndPopulate<uint8_t>(m.input3(), inputs3[0]);
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
3e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-1)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-1)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-1)));
}
TEST(DetectionPostprocessOpTest, FloatTestwithNoBackgroundClassAndKeypoints) {
DetectionPostprocessOpModelwithRegularNMS m(
{TensorType_FLOAT32, {1, 6, 5}}, {TensorType_FLOAT32, {1, 6, 2}},
{TensorType_FLOAT32, {6, 4}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {}},
{TensorType_FLOAT32, {}}, false);
// six boxes in center-size encoding
m.SetInput1<float>({
0.0, 0.0, 0.0, 0.0, 1.0, // box #1
0.0, 1.0, 0.0, 0.0, 1.0, // box #2
0.0, -1.0, 0.0, 0.0, 1.0, // box #3
0.0, 0.0, 0.0, 0.0, 1.0, // box #4
0.0, 1.0, 0.0, 0.0, 1.0, // box #5
0.0, 0.0, 0.0, 0.0, 1.0, // box #6
});
// class scores - two classes with no background
m.SetInput2<float>({.9, .8, .75, .72, .6, .5, .93, .95, .5, .4, .3, .2});
// six anchors in center-size encoding
m.SetInput3<float>({
0.5, 0.5, 1.0, 1.0, // anchor #1
0.5, 0.5, 1.0, 1.0, // anchor #2
0.5, 0.5, 1.0, 1.0, // anchor #3
0.5, 10.5, 1.0, 1.0, // anchor #4
0.5, 10.5, 1.0, 1.0, // anchor #5
0.5, 100.5, 1.0, 1.0 // anchor #6
});
m.Invoke();
// detection_boxes
// in center-size
std::vector<int> output_shape1 = m.GetOutputShape1();
EXPECT_THAT(output_shape1, ElementsAre(1, 3, 4));
EXPECT_THAT(
m.GetOutput1<float>(),
ElementsAreArray(ArrayFloatNear(
{0.0, 10.0, 1.0, 11.0, 0.0, 0.0, 1.0, 1.0, 0.0, 100.0, 1.0, 101.0},
1e-1)));
// detection_classes
std::vector<int> output_shape2 = m.GetOutputShape2();
EXPECT_THAT(output_shape2, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput2<float>(),
ElementsAreArray(ArrayFloatNear({1, 0, 0}, 1e-4)));
// detection_scores
std::vector<int> output_shape3 = m.GetOutputShape3();
EXPECT_THAT(output_shape3, ElementsAre(1, 3));
EXPECT_THAT(m.GetOutput3<float>(),
ElementsAreArray(ArrayFloatNear({0.95, 0.9, 0.3}, 1e-4)));
// num_detections
std::vector<int> output_shape4 = m.GetOutputShape4();
EXPECT_THAT(output_shape4, ElementsAre(1));
EXPECT_THAT(m.GetOutput4<float>(),
ElementsAreArray(ArrayFloatNear({3.0}, 1e-4)));
}
} // namespace
} // namespace custom
} // namespace ops
} // namespace tflite