114 lines
3.6 KiB
C++
114 lines
3.6 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/reference/densify.h"
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <cstdint>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace densify {
|
|
|
|
struct OpContext {
|
|
OpContext(TfLiteContext* context, TfLiteNode* node) {
|
|
input = GetInput(context, node, 0);
|
|
output = GetOutput(context, node, 0);
|
|
}
|
|
const TfLiteTensor* input;
|
|
TfLiteTensor* output;
|
|
};
|
|
|
|
struct OpData {
|
|
bool dense_weights_initialized;
|
|
};
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
auto* op_data = new OpData();
|
|
op_data->dense_weights_initialized = false;
|
|
return op_data;
|
|
}
|
|
|
|
void Free(TfLiteContext* context, void* buffer) {
|
|
delete reinterpret_cast<OpData*>(buffer);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
OpContext op_context(context, node);
|
|
|
|
TF_LITE_ENSURE(context, op_context.input->type != kTfLiteString);
|
|
TF_LITE_ENSURE(context, IsConstantTensor(op_context.input));
|
|
TF_LITE_ENSURE(context, op_context.input->sparsity != nullptr);
|
|
|
|
op_context.output->type = op_context.input->type;
|
|
op_context.output->allocation_type = kTfLiteArenaRwPersistent;
|
|
|
|
return context->ResizeTensor(context, op_context.output,
|
|
TfLiteIntArrayCopy(op_context.input->dims));
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
OpData* op_data = reinterpret_cast<OpData*>(node->user_data);
|
|
OpContext op_context(context, node);
|
|
if (op_data->dense_weights_initialized) {
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
switch (op_context.input->type) {
|
|
case kTfLiteFloat32:
|
|
reference_ops::Densify(op_context.input->sparsity,
|
|
GetTensorShape(op_context.input),
|
|
GetTensorData<float>(op_context.input),
|
|
GetTensorShape(op_context.output),
|
|
GetTensorData<float>(op_context.output));
|
|
break;
|
|
case kTfLiteInt8:
|
|
reference_ops::Densify(op_context.input->sparsity,
|
|
GetTensorShape(op_context.input),
|
|
GetTensorData<int8_t>(op_context.input),
|
|
GetTensorShape(op_context.output),
|
|
GetTensorData<int8_t>(op_context.output));
|
|
break;
|
|
|
|
default:
|
|
context->ReportError(context, "Type %d not supported.",
|
|
op_context.input->type);
|
|
return kTfLiteError;
|
|
}
|
|
|
|
op_data->dense_weights_initialized = true;
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace densify
|
|
|
|
TfLiteRegistration* Register_DENSIFY() {
|
|
static TfLiteRegistration r = {densify::Init, densify::Free, densify::Prepare,
|
|
densify::Eval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|