STT-tensorflow/tensorflow/lite/kernels/cast.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

135 lines
4.7 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <algorithm>
#include <complex>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace cast {
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
// TODO(ahentz): these two checks would make the new implementation
// incompatible with some existing models, where params is not specified. It
// is OK not to have them because toco would have set input and output types
// to match the parameters.
// auto* params = reinterpret_cast<TfLiteCastParams*>(node->builtin_data);
// TF_LITE_ENSURE_EQ(context, input->type, params->in_data_type);
// TF_LITE_ENSURE_EQ(context, output->type, params->out_data_type);
return context->ResizeTensor(context, output,
TfLiteIntArrayCopy(input->dims));
}
template <typename FromT, typename ToT>
void copyCast(const FromT* in, ToT* out, int num_elements) {
std::transform(in, in + num_elements, out,
[](FromT a) { return static_cast<ToT>(a); });
}
template <typename ToT>
void copyCast(const std::complex<float>* in, ToT* out, int num_elements) {
std::transform(in, in + num_elements, out, [](std::complex<float> a) {
return static_cast<ToT>(std::real(a));
});
}
template <>
void copyCast(const std::complex<float>* in, std::complex<float>* out,
int num_elements) {
std::transform(in, in + num_elements, out,
[](std::complex<float> a) { return a; });
}
template <typename FromT>
TfLiteStatus copyToTensor(const FromT* in, TfLiteTensor* out,
int num_elements) {
switch (out->type) {
case kTfLiteInt64:
copyCast(in, out->data.i64, num_elements);
break;
case kTfLiteInt32:
copyCast(in, out->data.i32, num_elements);
break;
case kTfLiteUInt8:
copyCast(in, out->data.uint8, num_elements);
break;
case kTfLiteFloat32:
copyCast(in, GetTensorData<float>(out), num_elements);
break;
case kTfLiteBool:
copyCast(in, out->data.b, num_elements);
break;
case kTfLiteComplex64:
copyCast(in, reinterpret_cast<std::complex<float>*>(out->data.c64),
num_elements);
break;
default:
// Unsupported type.
return kTfLiteError;
}
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
const int num_elements = NumElements(input);
TF_LITE_ENSURE_EQ(context, num_elements, NumElements(output));
switch (input->type) {
case kTfLiteInt64:
return copyToTensor(input->data.i64, output, num_elements);
case kTfLiteInt32:
return copyToTensor(input->data.i32, output, num_elements);
case kTfLiteUInt8:
return copyToTensor(input->data.uint8, output, num_elements);
case kTfLiteFloat32:
return copyToTensor(GetTensorData<float>(input), output, num_elements);
case kTfLiteBool:
return copyToTensor(input->data.b, output, num_elements);
case kTfLiteComplex64:
return copyToTensor(
reinterpret_cast<std::complex<float>*>(input->data.c64), output,
num_elements);
default:
// Unsupported type.
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace cast
TfLiteRegistration* Register_CAST() {
static TfLiteRegistration r = {nullptr, nullptr, cast::Prepare, cast::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite