- ABS - CEIL - FLOOR - NEG - ROUND - SQUARE PiperOrigin-RevId: 315750785 Change-Id: I382ad28b007d3364b74f50a77562e4758d6990dc
174 lines
6.3 KiB
C++
174 lines
6.3 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/delegates/xnnpack/unary_elementwise_tester.h"
|
|
|
|
#include <array>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <numeric>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/register.h"
|
|
#include "tensorflow/lite/model.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
#include "tensorflow/lite/version.h"
|
|
|
|
namespace tflite {
|
|
namespace xnnpack {
|
|
|
|
void UnaryElementwiseTester::Test(tflite::BuiltinOperator unary_op,
|
|
TfLiteDelegate* delegate) const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto input_rng = std::bind(
|
|
std::uniform_real_distribution<float>(-15.0f, 15.0f), std::ref(rng));
|
|
|
|
std::vector<char> buffer = CreateTfLiteModel(unary_op);
|
|
const Model* model = GetModel(buffer.data());
|
|
|
|
std::unique_ptr<Interpreter> delegate_interpreter;
|
|
ASSERT_EQ(
|
|
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
|
&delegate_interpreter),
|
|
kTfLiteOk);
|
|
std::unique_ptr<Interpreter> default_interpreter;
|
|
ASSERT_EQ(
|
|
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
|
&default_interpreter),
|
|
kTfLiteOk);
|
|
|
|
ASSERT_TRUE(delegate_interpreter);
|
|
ASSERT_TRUE(default_interpreter);
|
|
|
|
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
|
|
ASSERT_EQ(default_interpreter->inputs().size(), 1);
|
|
|
|
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
|
|
ASSERT_EQ(default_interpreter->outputs().size(), 1);
|
|
|
|
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
|
|
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
|
|
|
|
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
|
|
|
|
float* default_input_data = default_interpreter->typed_tensor<float>(
|
|
default_interpreter->inputs()[0]);
|
|
std::generate(default_input_data, default_input_data + Size(),
|
|
std::ref(input_rng));
|
|
|
|
float* delegate_input_data = delegate_interpreter->typed_tensor<float>(
|
|
delegate_interpreter->inputs()[0]);
|
|
std::copy(default_input_data, default_input_data + Size(),
|
|
delegate_input_data);
|
|
|
|
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
|
|
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
|
|
|
|
float* default_output_data = default_interpreter->typed_tensor<float>(
|
|
default_interpreter->outputs()[0]);
|
|
float* delegate_output_data = delegate_interpreter->typed_tensor<float>(
|
|
delegate_interpreter->outputs()[0]);
|
|
|
|
switch (unary_op) {
|
|
case BuiltinOperator_ABS:
|
|
case BuiltinOperator_CEIL:
|
|
case BuiltinOperator_FLOOR:
|
|
case BuiltinOperator_NEG:
|
|
case BuiltinOperator_RELU:
|
|
case BuiltinOperator_RELU_N1_TO_1:
|
|
case BuiltinOperator_RELU6:
|
|
case BuiltinOperator_ROUND:
|
|
case BuiltinOperator_SQUARE:
|
|
for (size_t i = 0; i < Size(); i++) {
|
|
ASSERT_EQ(default_output_data[i], delegate_output_data[i]);
|
|
}
|
|
break;
|
|
default:
|
|
for (size_t i = 0; i < Size(); i++) {
|
|
ASSERT_NEAR(
|
|
default_output_data[i], delegate_output_data[i],
|
|
std::numeric_limits<float>::epsilon() *
|
|
std::max(std::abs(default_output_data[i]) * RelativeTolerance(),
|
|
1.0f));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
std::vector<char> UnaryElementwiseTester::CreateTfLiteModel(
|
|
tflite::BuiltinOperator unary_op) const {
|
|
flatbuffers::FlatBufferBuilder builder;
|
|
flatbuffers::Offset<OperatorCode> operator_code =
|
|
CreateOperatorCode(builder, unary_op);
|
|
|
|
const std::array<flatbuffers::Offset<Buffer>, 1> buffers{{
|
|
CreateBuffer(builder, builder.CreateVector({})),
|
|
}};
|
|
|
|
const std::array<flatbuffers::Offset<Tensor>, 2> tensors{{
|
|
CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(Shape().data(), Shape().size()),
|
|
TensorType_FLOAT32),
|
|
CreateTensor(
|
|
builder,
|
|
builder.CreateVector<int32_t>(Shape().data(), Shape().size()),
|
|
TensorType_FLOAT32),
|
|
}};
|
|
|
|
const std::array<int32_t, 1> op_inputs{{0}};
|
|
const std::array<int32_t, 1> op_outputs{{1}};
|
|
flatbuffers::Offset<Operator> op = CreateOperator(
|
|
builder, /*opcode_index=*/0,
|
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()));
|
|
|
|
const std::array<int32_t, 1> subgraph_inputs{{0}};
|
|
const std::array<int32_t, 1> subgraph_outputs{{1}};
|
|
flatbuffers::Offset<SubGraph> subgraph = CreateSubGraph(
|
|
builder, builder.CreateVector(tensors.data(), tensors.size()),
|
|
builder.CreateVector<int32_t>(subgraph_inputs.data(),
|
|
subgraph_inputs.size()),
|
|
builder.CreateVector<int32_t>(subgraph_outputs.data(),
|
|
subgraph_outputs.size()),
|
|
builder.CreateVector(&op, 1));
|
|
|
|
flatbuffers::Offset<flatbuffers::String> description =
|
|
builder.CreateString("Unary operator model");
|
|
|
|
flatbuffers::Offset<Model> model_buffer = CreateModel(
|
|
builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1),
|
|
builder.CreateVector(&subgraph, 1), description,
|
|
builder.CreateVector(buffers.data(), buffers.size()));
|
|
|
|
builder.Finish(model_buffer);
|
|
|
|
return std::vector<char>(builder.GetBufferPointer(),
|
|
builder.GetBufferPointer() + builder.GetSize());
|
|
}
|
|
|
|
int32_t UnaryElementwiseTester::ComputeSize(const std::vector<int32_t>& shape) {
|
|
return std::accumulate(shape.cbegin(), shape.cend(), 1,
|
|
std::multiplies<int32_t>());
|
|
}
|
|
|
|
} // namespace xnnpack
|
|
} // namespace tflite
|