STT-tensorflow/tensorflow/core/protobuf/struct.proto
A. Unique TensorFlower 3f36b5d5bf Support for encoding/decoding BoundedTensorSpec objects.
PiperOrigin-RevId: 303036023
Change-Id: I38691dc2ced5162b77964f44bc17a81684c34923
2020-03-25 21:30:59 -07:00

151 lines
5.5 KiB
Protocol Buffer

syntax = "proto3";
package tensorflow;
import "tensorflow/core/framework/tensor.proto";
import "tensorflow/core/framework/tensor_shape.proto";
import "tensorflow/core/framework/types.proto";
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/core_protos_go_proto";
// `StructuredValue` represents a dynamically typed value representing various
// data structures that are inspired by Python data structures typically used in
// TensorFlow functions as inputs and outputs.
//
// For example when saving a Layer there may be a `training` argument. If the
// user passes a boolean True/False, that switches between two concrete
// TensorFlow functions. In order to switch between them in the same way after
// loading the SavedModel, we need to represent "True" and "False".
//
// A more advanced example might be a function which takes a list of
// dictionaries mapping from strings to Tensors. In order to map from
// user-specified arguments `[{"a": tf.constant(1.)}, {"q": tf.constant(3.)}]`
// after load to the right saved TensorFlow function, we need to represent the
// nested structure and the strings, recording that we have a trace for anything
// matching `[{"a": tf.TensorSpec(None, tf.float32)}, {"q": tf.TensorSpec([],
// tf.float64)}]` as an example.
//
// Likewise functions may return nested structures of Tensors, for example
// returning a dictionary mapping from strings to Tensors. In order for the
// loaded function to return the same structure we need to serialize it.
//
// This is an ergonomic aid for working with loaded SavedModels, not a promise
// to serialize all possible function signatures. For example we do not expect
// to pickle generic Python objects, and ideally we'd stay language-agnostic.
message StructuredValue {
// The kind of value.
oneof kind {
// Represents None.
NoneValue none_value = 1;
// Represents a double-precision floating-point value (a Python `float`).
double float64_value = 11;
// Represents a signed integer value, limited to 64 bits.
// Larger values from Python's arbitrary-precision integers are unsupported.
sint64 int64_value = 12;
// Represents a string of Unicode characters stored in a Python `str`.
// In Python 3, this is exactly what type `str` is.
// In Python 2, this is the UTF-8 encoding of the characters.
// For strings with ASCII characters only (as often used in TensorFlow code)
// there is effectively no difference between the language versions.
// The obsolescent `unicode` type of Python 2 is not supported here.
string string_value = 13;
// Represents a boolean value.
bool bool_value = 14;
// Represents a TensorShape.
tensorflow.TensorShapeProto tensor_shape_value = 31;
// Represents an enum value for dtype.
tensorflow.DataType tensor_dtype_value = 32;
// Represents a value for tf.TensorSpec.
TensorSpecProto tensor_spec_value = 33;
// Represents a value for tf.TypeSpec.
TypeSpecProto type_spec_value = 34;
// Represents a value for tf.BoundedTensorSpec.
BoundedTensorSpecProto bounded_tensor_spec_value = 35;
// Represents a list of `Value`.
ListValue list_value = 51;
// Represents a tuple of `Value`.
TupleValue tuple_value = 52;
// Represents a dict `Value`.
DictValue dict_value = 53;
// Represents Python's namedtuple.
NamedTupleValue named_tuple_value = 54;
}
}
// Represents None.
message NoneValue {}
// Represents a Python list.
message ListValue {
repeated StructuredValue values = 1;
}
// Represents a Python tuple.
message TupleValue {
repeated StructuredValue values = 1;
}
// Represents a Python dict keyed by `str`.
// The comment on Unicode from Value.string_value applies analogously.
message DictValue {
map<string, StructuredValue> fields = 1;
}
// Represents a (key, value) pair.
message PairValue {
string key = 1;
StructuredValue value = 2;
}
// Represents Python's namedtuple.
message NamedTupleValue {
string name = 1;
repeated PairValue values = 2;
}
// A protobuf to represent tf.TensorSpec.
message TensorSpecProto {
string name = 1;
tensorflow.TensorShapeProto shape = 2;
tensorflow.DataType dtype = 3;
}
// A protobuf to represent tf.BoundedTensorSpec.
message BoundedTensorSpecProto {
string name = 1;
tensorflow.TensorShapeProto shape = 2;
tensorflow.DataType dtype = 3;
tensorflow.TensorProto minimum = 4;
tensorflow.TensorProto maximum = 5;
}
// Represents a tf.TypeSpec
message TypeSpecProto {
enum TypeSpecClass {
UNKNOWN = 0;
SPARSE_TENSOR_SPEC = 1; // tf.SparseTensorSpec
INDEXED_SLICES_SPEC = 2; // tf.IndexedSlicesSpec
RAGGED_TENSOR_SPEC = 3; // tf.RaggedTensorSpec
TENSOR_ARRAY_SPEC = 4; // tf.TensorArraySpec
DATA_DATASET_SPEC = 5; // tf.data.DatasetSpec
DATA_ITERATOR_SPEC = 6; // IteratorSpec from data/ops/iterator_ops.py
OPTIONAL_SPEC = 7; // tf.OptionalSpec
PER_REPLICA_SPEC = 8; // PerReplicaSpec from distribute/values.py
VARIABLE_SPEC = 9; // tf.VariableSpec
ROW_PARTITION_SPEC = 10; // RowPartitionSpec from ragged/row_partition.py
}
TypeSpecClass type_spec_class = 1;
// The value returned by TypeSpec._serialize().
StructuredValue type_state = 2;
// This is currently redundant with the type_spec_class enum, and is only
// used for error reporting. In particular, if you use an older binary to
// load a newer model, and the model uses a TypeSpecClass that the older
// binary doesn't support, then this lets us display a useful error message.
string type_spec_class_name = 3;
}