STT-tensorflow/tensorflow/core/protobuf/BUILD
A. Unique TensorFlower fd895bf2b9 [BUILD] Create a separate BUILD file for "tensorflow/core/protobuf"`.
This change leaves all existing targets in "tensorflow/core/BUILD" in place, with some becoming aliases. In future, we will remove aliases and point to the new locations.

PiperOrigin-RevId: 311194740
Change-Id: Id413277651b260641c1c2e06cb54d16629e6e662
2020-05-12 13:51:52 -07:00

183 lines
4.7 KiB
Python

# For platform specific build config
load(
"//tensorflow/core/platform:build_config.bzl",
"tf_additional_all_protos",
"tf_proto_library",
"tf_proto_library_cc",
"tf_pyclif_proto_library",
)
package(
default_visibility = [
"//tensorflow:internal",
"//tensorflow/core:__subpackages__",
"//tensorflow_models:__subpackages__",
],
licenses = ["notice"], # Apache 2.0
)
COMMON_PROTO_SRCS = [
"bfc_memory_map.proto",
"config.proto",
"cluster.proto",
"debug.proto",
"device_filters.proto",
"device_properties.proto",
"graph_debug_info.proto",
"queue_runner.proto",
"rewriter_config.proto",
"tensor_bundle.proto",
"saver.proto",
"verifier_config.proto",
]
[
[
tf_pyclif_proto_library(
name = "%s_pyclif" % proto_name,
proto_lib = ":for_core_protos",
proto_srcfile = "%s.proto" % proto_name,
visibility = ["//visibility:public"],
),
]
for proto_name in [
"config",
"device_properties",
"graph_debug_info",
"meta_graph",
"saved_model",
]
]
tf_proto_library(
name = "autotuning_proto",
srcs = ["autotuning.proto"],
cc_api_version = 2,
make_default_target_header_only = True,
)
tf_proto_library(
name = "conv_autotuning_proto",
srcs = ["conv_autotuning.proto"],
cc_api_version = 2,
make_default_target_header_only = True,
protodeps = [
"//tensorflow/stream_executor:dnn_proto",
],
)
tf_proto_library_cc(
name = "worker_proto",
srcs = ["worker.proto"],
cc_api_version = 2,
protodeps = tf_additional_all_protos(),
visibility = ["//visibility:public"],
)
tf_proto_library_cc(
name = "worker_service_proto",
srcs = ["worker_service.proto"],
has_services = 1,
cc_api_version = 2,
cc_stubby_versions = ["2"],
protodeps = [":worker_proto"],
)
tf_proto_library_cc(
name = "master_proto",
srcs = ["master.proto"],
cc_api_version = 2,
protodeps = tf_additional_all_protos(),
visibility = ["//tensorflow:internal"],
)
tf_proto_library_cc(
name = "master_service_proto",
srcs = ["master_service.proto"],
has_services = 1,
cc_api_version = 2,
cc_stubby_versions = ["2"],
protodeps = [":master_proto"],
)
tf_proto_library_cc(
name = "eager_service_proto",
srcs = ["eager_service.proto"],
has_services = 1,
cc_api_version = 2,
cc_grpc_version = 1,
cc_stubby_versions = ["2"],
protodeps = tf_additional_all_protos(),
)
tf_proto_library_cc(
name = "replay_log_proto",
srcs = ["replay_log.proto"],
cc_api_version = 2,
protodeps = [
":master_proto",
] + tf_additional_all_protos(),
)
tf_proto_library(
name = "error_codes_proto_impl",
srcs = ["error_codes.proto"],
cc_api_version = 2,
make_default_target_header_only = True,
)
exports_files(
srcs = ["error_codes.proto"] + COMMON_PROTO_SRCS + [
# Protos which are not needed on mobile builds, but should be included
# in protos_all.
#
# Note that some protos are in neither core_proto_srcs nor this
# filegroup; e.g. ones with individual proto_library targets.
"control_flow.proto",
# TODO(ebrevdo): Re-enable once CriticalSection is in core.
# "critical_section.proto",
"data/experimental/snapshot.proto",
"debug_event.proto",
"meta_graph.proto",
"named_tensor.proto",
"remote_tensor_handle.proto",
"saved_model.proto",
"saved_object_graph.proto",
"struct.proto",
"tensorflow_server.proto",
"trackable_object_graph.proto",
"transport_options.proto",
],
)
tf_proto_library(
name = "for_core_protos",
srcs = COMMON_PROTO_SRCS + [
# Protos which are not needed on mobile builds, but should be included
# in protos_all.
#
# Note that some protos are in neither core_proto_srcs nor this
# filegroup; e.g. ones with individual proto_library targets.
"control_flow.proto",
# TODO(ebrevdo): Re-enable once CriticalSection is in core.
# "critical_section.proto",
"data/experimental/snapshot.proto",
"debug_event.proto",
"meta_graph.proto",
"named_tensor.proto",
"remote_tensor_handle.proto",
"saved_model.proto",
"saved_object_graph.proto",
"struct.proto",
"tensorflow_server.proto",
"trackable_object_graph.proto",
"transport_options.proto",
],
cc_api_version = 2,
make_default_target_header_only = True,
protodeps = [
":error_codes_proto_impl",
"//tensorflow/core/framework:protos_all",
],
)