STT-tensorflow/tensorflow/compiler/tf2xla/xla_context.cc
Gaurav Jain 309a3c7964 Avoid allocating ScopedStepContainer for each Run
We avoid recreating a ScopedStepContainer by storing one for reuse in
the KernelAndDeviceOp & KernelAndDeviceFunc classes. Further, we can
avoid doing a resource manager lookup to perform a clean by adding a
dirty flag to indicate the ScopedStepContainer was accessed.

In addition, we simplify the signature of MakeResourceHandle by avoiding
the need to pass in the entire OpKernelContext object.

PiperOrigin-RevId: 281110991
Change-Id: I0a186583a1ff50b08bf68c18cfb99c912e05386d
2019-11-18 11:29:49 -08:00

163 lines
5.8 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/tf2xla/xla_context.h"
#include <memory>
#include <utility>
#include <vector>
#include "absl/types/span.h"
#include "tensorflow/compiler/tf2xla/literal_util.h"
#include "tensorflow/compiler/tf2xla/shape_util.h"
#include "tensorflow/compiler/tf2xla/type_util.h"
#include "tensorflow/compiler/tf2xla/xla_helpers.h"
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
#include "tensorflow/compiler/xla/client/client_library.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/compiler/xla/client/xla_computation.h"
#include "tensorflow/compiler/xla/layout_util.h"
#include "tensorflow/compiler/xla/literal.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/core/common_runtime/dma_helper.h"
#include "tensorflow/core/platform/logging.h"
namespace tensorflow {
const char XlaContext::kXlaContextResourceName[] = "_xla_context";
// Looks up the context associated with the current step. It is stored
// in a resource container managed by the device.
/* static */ XlaContext& XlaContext::Get(const OpKernelContext* ctx) {
// When an Op kernel wants to use an XLA JIT context, the
// per-step context is looked up in the resource manager. The
// JIT will prepopulate the JITContext.
XlaContext* context;
TF_CHECK_OK(ctx->step_container()->Lookup(ctx->resource_manager(),
kXlaContextResourceName, &context));
// The resource manager handed us a fresh reference to 'context', but retains
// a reference itself so the context won't be freed. The resource manager will
// outlive the JIT compilation.
context->Unref();
return *context;
}
void XlaContext::set_args(std::vector<XlaExpression> args) {
args_ = std::move(args);
}
XlaContext::XlaContext(XlaCompiler* compiler, xla::XlaBuilder* builder)
: compiler_(compiler), builder_(builder) {}
string XlaContext::DebugString() const { return "XLA JIT context"; }
void XlaContext::SetRetval(int index, const XlaExpression& expression) {
if (retvals_.size() <= index) {
retvals_.resize(index + 1);
}
retvals_[index] = expression;
}
XlaResource* XlaContext::AddResource(std::unique_ptr<XlaResource> resource) {
resources_.push_back(std::move(resource));
return resources_.back().get();
}
const xla::XlaComputation* XlaContext::GetOrCreateMax(const DataType type) {
return LookupOrCreate(type, &max_func_, [type] {
const string type_string = DataTypeString(type);
VLOG(1) << "Building Max() for " << type_string;
xla::XlaBuilder b("max<" + type_string + ">");
xla::PrimitiveType xla_type;
TF_CHECK_OK(DataTypeToPrimitiveType(type, &xla_type));
auto x =
xla::Parameter(&b, 0, xla::ShapeUtil::MakeShape(xla_type, {}), "x");
auto y =
xla::Parameter(&b, 1, xla::ShapeUtil::MakeShape(xla_type, {}), "y");
xla::Max(x, y);
return b.Build().ConsumeValueOrDie();
});
}
const xla::XlaComputation* XlaContext::GetOrCreateMin(const DataType type) {
return LookupOrCreate(type, &min_func_, [type] {
const string type_string = DataTypeString(type);
VLOG(1) << "Building Min() for " << type_string;
xla::XlaBuilder b("min<" + type_string + ">");
xla::PrimitiveType xla_type;
TF_CHECK_OK(DataTypeToPrimitiveType(type, &xla_type));
auto x =
xla::Parameter(&b, 0, xla::ShapeUtil::MakeShape(xla_type, {}), "x");
auto y =
xla::Parameter(&b, 1, xla::ShapeUtil::MakeShape(xla_type, {}), "y");
xla::Min(x, y);
return b.Build().ConsumeValueOrDie();
});
}
const xla::XlaComputation* XlaContext::GetOrCreateAdd(const DataType type) {
return LookupOrCreate(type, &add_func_, [type] {
const string type_string = DataTypeString(type);
VLOG(1) << "Building Add() for " << type_string;
xla::XlaBuilder b("add<" + type_string + ">");
xla::PrimitiveType xla_type;
TF_CHECK_OK(DataTypeToPrimitiveType(type, &xla_type));
auto x =
xla::Parameter(&b, 0, xla::ShapeUtil::MakeShape(xla_type, {}), "x");
auto y =
xla::Parameter(&b, 1, xla::ShapeUtil::MakeShape(xla_type, {}), "y");
xla::Add(x, y);
return b.Build().ConsumeValueOrDie();
});
}
const xla::XlaComputation* XlaContext::GetOrCreateMul(const DataType type) {
return LookupOrCreate(type, &mul_func_, [type] {
const string type_string = DataTypeString(type);
VLOG(1) << "Building Mul() for " << type_string;
xla::XlaBuilder b("mul<" + type_string + ">");
xla::PrimitiveType xla_type;
TF_CHECK_OK(DataTypeToPrimitiveType(type, &xla_type));
auto x =
xla::Parameter(&b, 0, xla::ShapeUtil::MakeShape(xla_type, {}), "x");
auto y =
xla::Parameter(&b, 1, xla::ShapeUtil::MakeShape(xla_type, {}), "y");
xla::Mul(x, y);
return b.Build().ConsumeValueOrDie();
});
}
const xla::XlaComputation* XlaContext::LookupOrCreate(
DataType type, ComputationMap* out,
const std::function<xla::XlaComputation()>& create) {
{
const auto& entry = (*out)[type];
if (!entry.IsNull()) {
return &entry;
}
}
auto new_entry = create();
{
// Somebody else might have made one concurrently.
auto& entry = (*out)[type];
if (entry.IsNull()) {
entry = std::move(new_entry);
}
return &entry;
}
}
} // namespace tensorflow