The underlying HLO pad already supports negative edge padding. We just removed some checks preventing negative edge padding, and added a test. PiperOrigin-RevId: 316672291 Change-Id: I38e55f86727d90f66aadb549a587b43df6588571
98 lines
4.0 KiB
C++
98 lines
4.0 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "absl/algorithm/container.h"
|
|
#include "absl/strings/str_join.h"
|
|
#include "tensorflow/compiler/tf2xla/shape_util.h"
|
|
#include "tensorflow/compiler/tf2xla/xla_compiler.h"
|
|
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
|
|
#include "tensorflow/compiler/tf2xla/xla_op_registry.h"
|
|
#include "tensorflow/compiler/xla/client/xla_builder.h"
|
|
#include "tensorflow/core/framework/op_kernel.h"
|
|
|
|
namespace tensorflow {
|
|
namespace {
|
|
|
|
class XlaPadOp : public XlaOpKernel {
|
|
public:
|
|
explicit XlaPadOp(OpKernelConstruction* context) : XlaOpKernel(context) {}
|
|
|
|
void Compile(XlaOpKernelContext* context) override {
|
|
const TensorShape input_shape = context->InputShape("input");
|
|
const TensorShape padding_value_shape =
|
|
context->InputShape("padding_value");
|
|
|
|
std::vector<int64> padding_low;
|
|
std::vector<int64> padding_high;
|
|
std::vector<int64> padding_interior;
|
|
OP_REQUIRES_OK(context, context->ConstantInputAsIntVector("padding_low",
|
|
&padding_low));
|
|
OP_REQUIRES_OK(context, context->ConstantInputAsIntVector("padding_high",
|
|
&padding_high));
|
|
OP_REQUIRES_OK(context, context->ConstantInputAsIntVector(
|
|
"padding_interior", &padding_interior));
|
|
|
|
OP_REQUIRES(context, TensorShapeUtils::IsScalar(padding_value_shape),
|
|
errors::InvalidArgument("padding_value must be a scalar"));
|
|
const int rank = input_shape.dims();
|
|
OP_REQUIRES(context, rank == padding_low.size(),
|
|
errors::InvalidArgument(
|
|
"The size of padding_low must be equal to the input "
|
|
"rank (",
|
|
padding_low.size(), " vs. ", rank, ")"));
|
|
OP_REQUIRES(context, rank == padding_high.size(),
|
|
errors::InvalidArgument(
|
|
"The size of padding_high must be equal to the input "
|
|
"rank (",
|
|
padding_high.size(), " vs. ", rank, ")"));
|
|
OP_REQUIRES(context, rank == padding_interior.size(),
|
|
errors::InvalidArgument(
|
|
"The size of padding_interior must be equal to the input "
|
|
"rank (",
|
|
padding_interior.size(), " vs. ", rank, ")"));
|
|
|
|
auto non_negative = [](int64 x) { return x >= 0; };
|
|
OP_REQUIRES(
|
|
context, absl::c_all_of(padding_interior, non_negative),
|
|
errors::InvalidArgument("padding_interior must be non-negative, got [",
|
|
absl::StrJoin(padding_interior, ","), "]"));
|
|
|
|
xla::PaddingConfig padding_config;
|
|
for (int i = 0; i < rank; ++i) {
|
|
auto* dim = padding_config.add_dimensions();
|
|
dim->set_edge_padding_low(padding_low[i]);
|
|
dim->set_edge_padding_high(padding_high[i]);
|
|
dim->set_interior_padding(padding_interior[i]);
|
|
}
|
|
|
|
xla::XlaOp output =
|
|
xla::Pad(context->Input("input"), context->Input("padding_value"),
|
|
padding_config);
|
|
context->SetOutput(0, output);
|
|
}
|
|
|
|
private:
|
|
TF_DISALLOW_COPY_AND_ASSIGN(XlaPadOp);
|
|
};
|
|
|
|
REGISTER_XLA_OP(Name("XlaPad")
|
|
.CompileTimeConstantInput("padding_low")
|
|
.CompileTimeConstantInput("padding_high")
|
|
.CompileTimeConstantInput("padding_interior"),
|
|
XlaPadOp);
|
|
|
|
} // namespace
|
|
} // namespace tensorflow
|