STT-tensorflow/tensorflow/compiler/tf2xla/kernels/random_ops.cc
David Majnemer f31621823a [XLA] Broadcast ParameterizedTruncatedNormal parameters to the uniform's shape
PiperOrigin-RevId: 307231768
Change-Id: I5b06be798fe4be5ae4447e3a0060706ac0e08a26
2020-04-18 17:47:00 -07:00

365 lines
14 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// XLA implementations of Random ops
// TODO(misard,phawkins): handle random number generator seeds/states correctly.
// TODO(misard,phawkins): add tests.
#include "tensorflow/compiler/tf2xla/kernels/gather_op_helpers.h"
#include "tensorflow/compiler/tf2xla/lib/broadcast.h"
#include "tensorflow/compiler/tf2xla/lib/random.h"
#include "tensorflow/compiler/tf2xla/lib/util.h"
#include "tensorflow/compiler/tf2xla/shape_util.h"
#include "tensorflow/compiler/tf2xla/xla_helpers.h"
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
#include "tensorflow/compiler/tf2xla/xla_op_registry.h"
#include "tensorflow/compiler/xla/client/lib/arithmetic.h"
#include "tensorflow/compiler/xla/client/lib/comparators.h"
#include "tensorflow/compiler/xla/client/lib/constants.h"
#include "tensorflow/compiler/xla/client/lib/loops.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
namespace tensorflow {
namespace {
class RandomUniformOp : public XlaOpKernel {
public:
explicit RandomUniformOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}
void Compile(XlaOpKernelContext* ctx) override {
TensorShape shape;
OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape(0, &shape));
const DataType dtype = output_type(0);
xla::Shape xla_shape;
OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape));
xla::XlaBuilder* b = ctx->builder();
LOG_FIRST_N(WARNING, 1)
<< "Warning: Using tf.random.uniform with XLA compilation will ignore "
"seeds; consider using tf.random.stateless_uniform instead if "
"reproducible behavior is desired.";
xla::XlaOp result = xla::RngUniform(XlaHelpers::Zero(b, dtype),
XlaHelpers::One(b, dtype), xla_shape);
ctx->SetOutput(0, result);
}
private:
TF_DISALLOW_COPY_AND_ASSIGN(RandomUniformOp);
};
REGISTER_XLA_OP(Name("RandomUniform").CompileTimeConstantInput("shape"),
RandomUniformOp);
class RandomShuffleOp : public XlaOpKernel {
public:
explicit RandomShuffleOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}
void Compile(XlaOpKernelContext* ctx) override {
auto builder = ctx->builder();
xla::XlaOp input = ctx->Input(0);
TensorShape input_shape = ctx->InputShape(0);
const int64 n = input_shape.dim_size(0);
int64 num_elements = 1;
for (tensorflow::TensorShapeDim dimension : input_shape) {
num_elements *= dimension.size;
}
if (num_elements <= 1 || n <= 1) {
// No shuffling is required, so copy input directly to output
ctx->SetOutput(0, input);
return;
}
if (input_shape.dims() == 1) {
// For R1s, shuffle values by sorting instead of the obvious Fisher-Yates
// algorithm. Fisher-Yates is simple to implement and correct, but not
// easily parallelizable. For a sufficiently parallel architecture, it is
// faster to sort many times, than Fisher-Yates shuffle once.
// Shuffle values by assigning each value a random key and sorting the
// keys. Keys can collide causing detectable patterns in the shuffled
// output. Collisions translates into more ascending sub-sequences in the
// shuffled output than would be expected by chance. To avoid collisions,
// the number of possible key values must be sufficiently large.
// How are more than 2^32 keys created? In each loop iteration, the
// algorithm sorts by random keys. Conceptually, the earlier iterations
// are sorting on the lower-order bits of larger keys that are never
// actually assembled.
// The expected number of collisions is n - d + d(1 - 1/d)^n, where d is
// the number of possible keys and n is the number of values. If d = n^2,
// then the limit as n goes to infinity is 1/2. If d = n^3, then the limit
// as n goes to infinity is zero.
// This implementation ensures that the key-space is greater than or equal
// to the cube of the number of values. The risk of collisions can be
// further reduced by increasing Exponent at the expense of
// performance.
// For Exponent = 2, the expected number of collisions per shuffle is
// maximized at n = floor((2^32-1)^(1/2)) = 65535 where the expectation is
// about 1/2.
// For Exponent = 3, the expected number of collisions per shuffle is
// maximized at n = floor((2^32-1)^(1/3)) = 1625 where the expectation is
// about 1/3255.
// For Exponent = 4, the expected number of collisions per shuffle is
// maximized at n = floor((2^32-1)^(1/4)) = 255 where the expectation is
// about 1/132622.
constexpr int Exponent = 3;
const int rounds = static_cast<int>(
std::ceil(Exponent * std::log(num_elements) / std::log(kuint32max)));
const xla::Shape key_shape =
xla::ShapeUtil::MakeShape(xla::U32, {num_elements});
xla::XlaOp zero = xla::ConstantR0(builder, 0U);
// Unfortunately, xla::RngUniform gives values in the half open interval
// rather than the closed interval, so instead of 2^32 possible keys there
// are only 2^32 - 1 (kuint32max).
xla::XlaOp max_value = xla::ConstantR0(builder, kuint32max);
xla::XlaOp curr = input;
for (int i = 0; i < rounds; ++i) {
xla::XlaOp keys = xla::RngUniform(zero, max_value, key_shape);
xla::XlaOp sorted = xla::Sort(
{keys, curr}, xla::CreateScalarLtComputation(
{xla::U32, ctx->input_xla_type(0)}, builder));
curr = xla::GetTupleElement(sorted, 1);
}
ctx->SetOutput(0, curr);
return;
}
// The Fisher-Yates algorithm.
// Generate the random swaps for the indices.
auto swaps_shape = xla::ShapeUtil::MakeShape(xla::S32, {n});
LOG_FIRST_N(WARNING, 1)
<< "Warning: Using tf.random.shuffle with XLA compilation "
"will ignore seeds.";
auto swaps =
xla::RngUniform(xla::ConstantR0<int32>(builder, 0),
xla::ConstantR0<int32>(builder, n), swaps_shape);
// Generate range(n) as the initial value for the indices to be swapped.
xla::XlaOp indices = xla::Iota(builder, xla::S32, n);
// Swap the indices at i and swaps[i].
auto swap_body_fn = [&](xla::XlaOp i,
absl::Span<const xla::XlaOp> loop_vars,
xla::XlaBuilder* builder)
-> xla::StatusOr<std::vector<xla::XlaOp>> {
auto swaps = loop_vars[0];
auto indices = loop_vars[1];
// TODO(b/118437727): The absl::Span nonsense is only necessary because
// the deprecated overload creates ambiguity for the single-element span
// case. Remove it once the deprecated overload is gone.
// temp = indices[i]
auto temp =
xla::DynamicSlice(indices, absl::Span<const xla::XlaOp>({i}), {1});
// swap_index = swaps[i]
auto swap_index = xla::Reshape(
xla::DynamicSlice(swaps, absl::Span<const xla::XlaOp>({i}), {1}), {});
// swap_value = indices[swaps[i]]
auto swap_value = xla::DynamicSlice(
indices, absl::Span<const xla::XlaOp>({swap_index}), {1});
// indices[i] = indices[swaps[i]]
indices = xla::DynamicUpdateSlice(indices, swap_value,
absl::Span<const xla::XlaOp>({i}));
// indices[swaps[i]] = temp
indices = xla::DynamicUpdateSlice(
indices, temp, absl::Span<const xla::XlaOp>({swap_index}));
return std::vector<xla::XlaOp>{swaps, indices};
};
// for i in range(n):
auto swap_loop_result =
xla::ForEachIndex(n, xla::S32, swap_body_fn, {swaps, indices},
"indices_swap_loop", builder)
.ValueOrDie();
auto swapped_indices = swap_loop_result[1];
// Gather the data using the swapped indices as the shuffled order.
auto indices_tensor_shape = TensorShape({n});
DataType type = ctx->expected_output_dtype(0);
xla::XlaOp gather;
OP_REQUIRES_OK(ctx, XlaGather(input, input_shape, swapped_indices,
indices_tensor_shape,
/*axis=*/0, /*indices_are_nd=*/false, type,
DT_INT32, builder, &gather));
ctx->SetOutput(0, gather);
}
private:
TF_DISALLOW_COPY_AND_ASSIGN(RandomShuffleOp);
};
REGISTER_XLA_OP(Name("RandomShuffle"), RandomShuffleOp);
class RandomUniformIntOp : public XlaOpKernel {
public:
explicit RandomUniformIntOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}
void Compile(XlaOpKernelContext* ctx) override {
TensorShape shape;
OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape(0, &shape));
xla::Shape xla_shape;
OP_REQUIRES_OK(ctx,
TensorShapeToXLAShape(input_type(1), shape, &xla_shape));
const TensorShape minval_shape = ctx->InputShape(1);
const TensorShape maxval_shape = ctx->InputShape(2);
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(minval_shape),
errors::InvalidArgument("minval must be 0-D, got shape ",
minval_shape.DebugString()));
OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(maxval_shape),
errors::InvalidArgument("maxval must be 0-D, got shape ",
maxval_shape.DebugString()));
auto minval = ctx->Input(1);
auto maxval = ctx->Input(2);
LOG_FIRST_N(WARNING, 1)
<< "Warning: Using tf.random.uniform with XLA compilation will ignore "
"seeds; consider using tf.random.stateless_uniform instead if "
"reproducible behavior is desired.";
ctx->SetOutput(0, xla::RngUniform(minval, maxval, xla_shape));
}
private:
TF_DISALLOW_COPY_AND_ASSIGN(RandomUniformIntOp);
};
REGISTER_XLA_OP(Name("RandomUniformInt").CompileTimeConstantInput("shape"),
RandomUniformIntOp);
class RandomStandardNormalOp : public XlaOpKernel {
public:
explicit RandomStandardNormalOp(OpKernelConstruction* ctx)
: XlaOpKernel(ctx) {}
void Compile(XlaOpKernelContext* ctx) override {
const DataType dtype = output_type(0);
TensorShape shape;
OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape(0, &shape));
xla::Shape xla_shape;
OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape));
xla::XlaBuilder* b = ctx->builder();
// Normal distribution with a mean of 0 and a standard deviation of 1:
xla::XlaOp result = xla::RngNormal(XlaHelpers::Zero(b, dtype),
XlaHelpers::One(b, dtype), xla_shape);
ctx->SetOutput(0, result);
}
private:
TF_DISALLOW_COPY_AND_ASSIGN(RandomStandardNormalOp);
};
REGISTER_XLA_OP(Name("RandomStandardNormal").CompileTimeConstantInput("shape"),
RandomStandardNormalOp);
class TruncatedNormalOp : public XlaOpKernel {
public:
explicit TruncatedNormalOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}
void Compile(XlaOpKernelContext* ctx) override {
const DataType dtype = output_type(0);
TensorShape shape;
OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape(0, &shape));
xla::Shape xla_shape;
OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape));
xla::XlaBuilder* b = ctx->builder();
xla::XlaOp one = xla::One(b, xla_shape.element_type());
xla::XlaOp min_positive =
xla::MinPositiveNormalValue(b, xla_shape.element_type());
LOG_FIRST_N(WARNING, 1)
<< "Warning: Using tf.random.truncated_normal with XLA "
"compilation will ignore seeds; consider using "
"tf.random.stateless_truncated_normal instead if "
"reproducible behavior is desired.";
auto uniform = xla::RngUniform(min_positive, one, xla_shape);
ctx->SetOutput(0, TruncatedNormal(uniform));
}
};
REGISTER_XLA_OP(Name("TruncatedNormal")
.CompileTimeConstantInput("shape")
.TypeConstraint("dtype", {DT_FLOAT, DT_DOUBLE}),
TruncatedNormalOp);
class ParameterizedTruncatedNormalOp : public XlaOpKernel {
public:
explicit ParameterizedTruncatedNormalOp(OpKernelConstruction* ctx)
: XlaOpKernel(ctx) {}
void Compile(XlaOpKernelContext* ctx) override {
const DataType dtype = output_type(0);
TensorShape shape;
OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape(0, &shape));
xla::Shape xla_shape;
OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape));
xla::XlaBuilder* b = ctx->builder();
xla::XlaOp one = xla::One(b, xla_shape.element_type());
xla::XlaOp min_positive =
xla::MinPositiveNormalValue(b, xla_shape.element_type());
LOG_FIRST_N(WARNING, 1)
<< "Warning: Using tf.random.truncated_normal with XLA "
"compilation will ignore seeds; consider using "
"tf.random.stateless_truncated_normal instead if "
"reproducible behavior is desired.";
xla::XlaOp uniform = xla::RngUniform(min_positive, one, xla_shape);
auto result = b->ReportErrorOrReturn([&]() -> xla::StatusOr<xla::XlaOp> {
TF_ASSIGN_OR_RETURN(xla::XlaOp means,
BroadcastTo(ctx->Input(1), shape.dim_sizes()));
TF_ASSIGN_OR_RETURN(xla::XlaOp stddevs,
BroadcastTo(ctx->Input(2), shape.dim_sizes()));
TF_ASSIGN_OR_RETURN(xla::XlaOp minvals,
BroadcastTo(ctx->Input(3), shape.dim_sizes()));
TF_ASSIGN_OR_RETURN(xla::XlaOp maxvals,
BroadcastTo(ctx->Input(4), shape.dim_sizes()));
return ParameterizedTruncatedNormal(uniform, means, stddevs, minvals,
maxvals);
});
ctx->SetOutput(0, result);
}
};
REGISTER_XLA_OP(Name("ParameterizedTruncatedNormal")
.CompileTimeConstantInput("shape")
.TypeConstraint("dtype", {DT_FLOAT, DT_DOUBLE}),
ParameterizedTruncatedNormalOp);
} // namespace
} // namespace tensorflow