STT-tensorflow/tensorflow/compiler/tf2xla/kernels/dynamic_slice_ops.cc
Smit Hinsu 296993a42c Remove deprecated variants of DynamicSlice and DynamicUpdateSlice builders
Upgraded existing users by converting 1d start_slices to a list of scalars. I am expecting this to be performance neutral as these tensors are expected to be small. I decided against having the XlaBuilder do this internally as I guess we want to discourage usage of vector indices.

PiperOrigin-RevId: 311261628
Change-Id: I4b779a58cfca1699bdf5104c236bc6453fd419bc
2020-05-12 21:33:39 -07:00

125 lines
4.8 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <algorithm>
#include "tensorflow/compiler/tf2xla/shape_util.h"
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
#include "tensorflow/compiler/tf2xla/xla_op_registry.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/compiler/tf2xla/type_util.h"
#include "tensorflow/compiler/tf2xla/xla_helpers.h"
#include "tensorflow/core/framework/kernel_def_builder.h"
namespace tensorflow {
namespace {
absl::InlinedVector<xla::XlaOp, 4> SliceVector(xla::XlaOp input, int64 rank) {
absl::InlinedVector<xla::XlaOp, 4> scalar_indices;
scalar_indices.reserve(rank);
for (int i = 0; i < rank; i++)
scalar_indices.push_back(
xla::Reshape(xla::Slice(input, {i}, {i + 1}, {1}), {}));
return scalar_indices;
}
class DynamicUpdateSliceOp : public XlaOpKernel {
public:
explicit DynamicUpdateSliceOp(OpKernelConstruction* context)
: XlaOpKernel(context) {}
void Compile(XlaOpKernelContext* ctx) override {
DataType index_type = ctx->InputType("indices");
CHECK(index_type == DT_INT32 || index_type == DT_INT64);
const TensorShape input_shape = ctx->InputShape("input");
const TensorShape update_shape = ctx->InputShape("update");
const TensorShape index_shape = ctx->InputShape("indices");
int64 rank = input_shape.dims();
OP_REQUIRES(
ctx,
TensorShapeUtils::IsVector(index_shape) &&
index_shape.num_elements() == rank,
errors::InvalidArgument("index must be a vector with length equal to "
"the number of input dimensions"));
OP_REQUIRES(
ctx, rank == update_shape.dims(),
errors::InvalidArgument("input and update must have the same rank,"
" input shape is ",
input_shape.DebugString(), "; update shape is ",
update_shape.DebugString()));
xla::XlaOp indices = ctx->Input("indices");
xla::XlaOp result = xla::DynamicUpdateSlice(
ctx->Input("input"), ctx->Input("update"), SliceVector(indices, rank));
ctx->SetOutput(0, result);
}
};
REGISTER_XLA_OP(Name("XlaDynamicUpdateSlice"), DynamicUpdateSliceOp);
class DynamicSliceOp : public XlaOpKernel {
public:
explicit DynamicSliceOp(OpKernelConstruction* context)
: XlaOpKernel(context) {}
void Compile(XlaOpKernelContext* ctx) override {
DataType index_type = ctx->InputType("start_indices");
CHECK(index_type == DT_INT32 || index_type == DT_INT64);
CHECK(index_type == ctx->InputType("size_indices"));
const TensorShape input_shape = ctx->InputShape("input");
const TensorShape start_indices_shape = ctx->InputShape("start_indices");
const TensorShape size_indices_shape = ctx->InputShape("size_indices");
int64 rank = input_shape.dims();
OP_REQUIRES(ctx,
TensorShapeUtils::IsVector(start_indices_shape) &&
start_indices_shape.num_elements() == rank,
errors::InvalidArgument(
"start_indices must be a vector with length equal to "
"input rank, but input rank is ",
rank, " and start_indices has shape ",
start_indices_shape.DebugString()));
OP_REQUIRES(ctx,
TensorShapeUtils::IsVector(size_indices_shape) &&
size_indices_shape.num_elements() == rank,
errors::InvalidArgument(
"size_indices must be a vector with length equal to "
"input rank, but input rank is ",
input_shape.dims(), " and size_indices has shape ",
size_indices_shape.DebugString()));
std::vector<int64> size_indices;
OP_REQUIRES_OK(
ctx, ctx->ConstantInputAsIntVector("size_indices", &size_indices));
xla::XlaOp start_indices = ctx->Input("start_indices");
xla::XlaOp result = xla::DynamicSlice(
ctx->Input("input"), SliceVector(start_indices, rank), size_indices);
ctx->SetOutput(0, result);
}
};
REGISTER_XLA_OP(
Name("XlaDynamicSlice").CompileTimeConstantInput("size_indices"),
DynamicSliceOp);
} // namespace
} // namespace tensorflow