STT-tensorflow/tensorflow/compiler/tests/momentum_test.py
Sanjoy Das 6762ca15c4 Change all compiler tests to use self.session
The session returned by cached_session uses soft placement, something we don't
want for XLA_* devices.  With soft placement ops lacking XLA kernels silently
fall back and run on the CPU, misleading us into thinking we have more test
coverage than we actually do.  With this test some tests (rightly) start failing
because they were testing ops with dtypes the XLA kernels do not support.  I've
removed these dtypes from the tests.

This CL partially addresses b/132430685.  It stubs out "cached_session" and
"test_session" to raise errors, so we have more confidence that the compiler is
being exercised.  However, we still use XLA_* devices to exercise XLA, which has
a different code path than xla.compile and tpu.rewrite.  This needs to be
incrementally fixed.

PiperOrigin-RevId: 248437673
2019-05-15 17:32:14 -07:00

191 lines
8.7 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Momentum."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.compiler.tests import xla_test
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
from tensorflow.python.training import momentum as momentum_lib
class MomentumOptimizerTest(xla_test.XLATestCase):
def _update_nesterov_momentum_numpy(self, var, accum, g, lr, momentum):
var += accum * lr * momentum
accum = accum * momentum + g
var -= lr * accum
var -= accum * lr * momentum
return var, accum
def testBasic(self):
for dtype in self.float_types:
with self.session(), self.test_scope():
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype)
grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
mom_opt = momentum_lib.MomentumOptimizer(
learning_rate=2.0, momentum=0.9)
mom_update = mom_opt.apply_gradients(
zip([grads0, grads1], [var0, var1]))
variables.global_variables_initializer().run()
# Check we have slots
self.assertEqual(["momentum"], mom_opt.get_slot_names())
slot0 = mom_opt.get_slot(var0, "momentum")
self.assertEquals(slot0.get_shape(), var0.get_shape())
self.assertFalse(slot0 in variables.trainable_variables())
slot1 = mom_opt.get_slot(var1, "momentum")
self.assertEquals(slot1.get_shape(), var1.get_shape())
self.assertFalse(slot1 in variables.trainable_variables())
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Step 1: the momentum accumulators where 0. So we should see a normal
# update: v -= grad * learning_rate
mom_update.run()
# Check that the momentum accumulators have been updated.
self.assertAllCloseAccordingToType(
np.array([0.1, 0.1]), self.evaluate(slot0))
self.assertAllCloseAccordingToType(
np.array([0.01, 0.01]), self.evaluate(slot1))
# Check that the parameters have been updated.
self.assertAllCloseAccordingToType(
np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]),
self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]),
self.evaluate(var1))
# Step 2: the momentum accumulators contain the previous update.
mom_update.run()
# Check that the momentum accumulators have been updated.
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]),
self.evaluate(slot0))
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]),
self.evaluate(slot1))
# Check that the parameters have been updated.
self.assertAllCloseAccordingToType(
np.array([
1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0),
2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0)
]), self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([
2.98 - ((0.9 * 0.01 + 0.01) * 2.0),
3.98 - ((0.9 * 0.01 + 0.01) * 2.0)
]), self.evaluate(var1))
def testNesterovMomentum(self):
for dtype in self.float_types:
with self.session(), self.test_scope():
var0 = resource_variable_ops.ResourceVariable([0.1, 0.2], dtype=dtype)
var1 = resource_variable_ops.ResourceVariable([0.3, 0.4], dtype=dtype)
var0_np = np.array([0.1, 0.2], dtype=dtype)
var1_np = np.array([0.3, 0.4], dtype=dtype)
accum0_np = np.array([0.0, 0.0], dtype=dtype)
accum1_np = np.array([0.0, 0.0], dtype=dtype)
cost = 0.4 * var0 * var0 + 0.9 * var1
global_step = resource_variable_ops.ResourceVariable(
array_ops.zeros([], dtypes.int32), name="global_step")
mom_op = momentum_lib.MomentumOptimizer(
learning_rate=0.1, momentum=0.9, use_nesterov=True)
opt_op = mom_op.minimize(cost, global_step, [var0, var1])
variables.global_variables_initializer().run()
for _ in range(1, 5):
opt_op.run()
var0_np, accum0_np = self._update_nesterov_momentum_numpy(
var0_np, accum0_np, var0_np * 0.8, 0.1, 0.9)
var1_np, accum1_np = self._update_nesterov_momentum_numpy(
var1_np, accum1_np, 0.9, 0.1, 0.9)
self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
def testTensorLearningRateAndMomentum(self):
for dtype in self.float_types:
with self.session(), self.test_scope():
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype)
grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
mom_opt = momentum_lib.MomentumOptimizer(
learning_rate=constant_op.constant(2.0),
momentum=constant_op.constant(0.9))
mom_update = mom_opt.apply_gradients(
zip([grads0, grads1], [var0, var1]))
variables.global_variables_initializer().run()
# Check we have slots
self.assertEqual(["momentum"], mom_opt.get_slot_names())
slot0 = mom_opt.get_slot(var0, "momentum")
self.assertEquals(slot0.get_shape(), var0.get_shape())
self.assertFalse(slot0 in variables.trainable_variables())
slot1 = mom_opt.get_slot(var1, "momentum")
self.assertEquals(slot1.get_shape(), var1.get_shape())
self.assertFalse(slot1 in variables.trainable_variables())
# Fetch params to validate initial values
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
# Step 1: the momentum accumulators where 0. So we should see a normal
# update: v -= grad * learning_rate
mom_update.run()
# Check that the momentum accumulators have been updated.
self.assertAllCloseAccordingToType(
np.array([0.1, 0.1]), self.evaluate(slot0))
self.assertAllCloseAccordingToType(
np.array([0.01, 0.01]), self.evaluate(slot1))
# Check that the parameters have been updated.
self.assertAllCloseAccordingToType(
np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]),
self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]),
self.evaluate(var1))
# Step 2: the momentum accumulators contain the previous update.
mom_update.run()
# Check that the momentum accumulators have been updated.
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]),
self.evaluate(slot0))
self.assertAllCloseAccordingToType(
np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]),
self.evaluate(slot1))
# Check that the parameters have been updated.
self.assertAllCloseAccordingToType(
np.array([
1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0),
2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0)
]), self.evaluate(var0))
self.assertAllCloseAccordingToType(
np.array([
2.98 - ((0.9 * 0.01 + 0.01) * 2.0),
3.98 - ((0.9 * 0.01 + 0.01) * 2.0)
]), self.evaluate(var1))
if __name__ == "__main__":
test.main()