235 lines
7.3 KiB
C++
235 lines
7.3 KiB
C++
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include <cstdio>
|
|
#include <functional>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "tensorflow/cc/ops/standard_ops.h"
|
|
#include "tensorflow/core/framework/graph.pb.h"
|
|
#include "tensorflow/core/framework/tensor.h"
|
|
#include "tensorflow/core/graph/default_device.h"
|
|
#include "tensorflow/core/graph/graph_def_builder.h"
|
|
#include "tensorflow/core/lib/core/threadpool.h"
|
|
#include "tensorflow/core/lib/strings/str_util.h"
|
|
#include "tensorflow/core/lib/strings/stringprintf.h"
|
|
#include "tensorflow/core/platform/init_main.h"
|
|
#include "tensorflow/core/platform/logging.h"
|
|
#include "tensorflow/core/platform/types.h"
|
|
#include "tensorflow/core/public/session.h"
|
|
|
|
using tensorflow::string;
|
|
using tensorflow::int32;
|
|
|
|
namespace tensorflow {
|
|
namespace example {
|
|
|
|
struct Options {
|
|
int num_concurrent_sessions = 1; // The number of concurrent sessions
|
|
int num_concurrent_steps = 10; // The number of concurrent steps
|
|
int num_iterations = 100; // Each step repeats this many times
|
|
bool use_gpu = false; // Whether to use gpu in the training
|
|
};
|
|
|
|
// A = [3 2; -1 0]; x = rand(2, 1);
|
|
// We want to compute the largest eigenvalue for A.
|
|
// repeat x = y / y.norm(); y = A * x; end
|
|
GraphDef CreateGraphDef() {
|
|
// TODO(jeff,opensource): This should really be a more interesting
|
|
// computation. Maybe turn this into an mnist model instead?
|
|
Scope root = Scope::NewRootScope();
|
|
using namespace ::tensorflow::ops; // NOLINT(build/namespaces)
|
|
|
|
// A = [3 2; -1 0]. Using Const<float> means the result will be a
|
|
// float tensor even though the initializer has integers.
|
|
auto a = Const<float>(root, {{3, 2}, {-1, 0}});
|
|
|
|
// x = [1.0; 1.0]
|
|
auto x = Const(root.WithOpName("x"), {{1.f}, {1.f}});
|
|
|
|
// y = A * x
|
|
auto y = MatMul(root.WithOpName("y"), a, x);
|
|
|
|
// y2 = y.^2
|
|
auto y2 = Square(root, y);
|
|
|
|
// y2_sum = sum(y2). Note that you can pass constants directly as
|
|
// inputs. Sum() will automatically create a Const node to hold the
|
|
// 0 value.
|
|
auto y2_sum = Sum(root, y2, 0);
|
|
|
|
// y_norm = sqrt(y2_sum)
|
|
auto y_norm = Sqrt(root, y2_sum);
|
|
|
|
// y_normalized = y ./ y_norm
|
|
Div(root.WithOpName("y_normalized"), y, y_norm);
|
|
|
|
GraphDef def;
|
|
TF_CHECK_OK(root.ToGraphDef(&def));
|
|
|
|
return def;
|
|
}
|
|
|
|
string DebugString(const Tensor& x, const Tensor& y) {
|
|
CHECK_EQ(x.NumElements(), 2);
|
|
CHECK_EQ(y.NumElements(), 2);
|
|
auto x_flat = x.flat<float>();
|
|
auto y_flat = y.flat<float>();
|
|
// Compute an estimate of the eigenvalue via
|
|
// (x' A x) / (x' x) = (x' y) / (x' x)
|
|
// and exploit the fact that x' x = 1 by assumption
|
|
Eigen::Tensor<float, 0, Eigen::RowMajor> lambda = (x_flat * y_flat).sum();
|
|
return strings::Printf("lambda = %8.6f x = [%8.6f %8.6f] y = [%8.6f %8.6f]",
|
|
lambda(), x_flat(0), x_flat(1), y_flat(0), y_flat(1));
|
|
}
|
|
|
|
void ConcurrentSteps(const Options* opts, int session_index) {
|
|
// Creates a session.
|
|
SessionOptions options;
|
|
std::unique_ptr<Session> session(NewSession(options));
|
|
GraphDef def = CreateGraphDef();
|
|
if (options.target.empty()) {
|
|
graph::SetDefaultDevice(opts->use_gpu ? "/device:GPU:0" : "/cpu:0", &def);
|
|
}
|
|
|
|
TF_CHECK_OK(session->Create(def));
|
|
|
|
// Spawn M threads for M concurrent steps.
|
|
const int M = opts->num_concurrent_steps;
|
|
std::unique_ptr<thread::ThreadPool> step_threads(
|
|
new thread::ThreadPool(Env::Default(), "trainer", M));
|
|
|
|
for (int step = 0; step < M; ++step) {
|
|
step_threads->Schedule([&session, opts, session_index, step]() {
|
|
// Randomly initialize the input.
|
|
Tensor x(DT_FLOAT, TensorShape({2, 1}));
|
|
auto x_flat = x.flat<float>();
|
|
x_flat.setRandom();
|
|
Eigen::Tensor<float, 0, Eigen::RowMajor> inv_norm =
|
|
x_flat.square().sum().sqrt().inverse();
|
|
x_flat = x_flat * inv_norm();
|
|
|
|
// Iterations.
|
|
std::vector<Tensor> outputs;
|
|
for (int iter = 0; iter < opts->num_iterations; ++iter) {
|
|
outputs.clear();
|
|
TF_CHECK_OK(
|
|
session->Run({{"x", x}}, {"y:0", "y_normalized:0"}, {}, &outputs));
|
|
CHECK_EQ(size_t{2}, outputs.size());
|
|
|
|
const Tensor& y = outputs[0];
|
|
const Tensor& y_norm = outputs[1];
|
|
// Print out lambda, x, and y.
|
|
std::printf("%06d/%06d %s\n", session_index, step,
|
|
DebugString(x, y).c_str());
|
|
// Copies y_normalized to x.
|
|
x = y_norm;
|
|
}
|
|
});
|
|
}
|
|
|
|
// Delete the threadpool, thus waiting for all threads to complete.
|
|
step_threads.reset(nullptr);
|
|
TF_CHECK_OK(session->Close());
|
|
}
|
|
|
|
void ConcurrentSessions(const Options& opts) {
|
|
// Spawn N threads for N concurrent sessions.
|
|
const int N = opts.num_concurrent_sessions;
|
|
|
|
// At the moment our Session implementation only allows
|
|
// one concurrently computing Session on GPU.
|
|
CHECK_EQ(1, N) << "Currently can only have one concurrent session.";
|
|
|
|
thread::ThreadPool session_threads(Env::Default(), "trainer", N);
|
|
for (int i = 0; i < N; ++i) {
|
|
session_threads.Schedule(std::bind(&ConcurrentSteps, &opts, i));
|
|
}
|
|
}
|
|
|
|
} // end namespace example
|
|
} // end namespace tensorflow
|
|
|
|
namespace {
|
|
|
|
bool ParseInt32Flag(tensorflow::StringPiece arg, tensorflow::StringPiece flag,
|
|
int32* dst) {
|
|
if (absl::ConsumePrefix(&arg, flag) && absl::ConsumePrefix(&arg, "=")) {
|
|
char extra;
|
|
return (sscanf(arg.data(), "%d%c", dst, &extra) == 1);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ParseBoolFlag(tensorflow::StringPiece arg, tensorflow::StringPiece flag,
|
|
bool* dst) {
|
|
if (absl::ConsumePrefix(&arg, flag)) {
|
|
if (arg.empty()) {
|
|
*dst = true;
|
|
return true;
|
|
}
|
|
|
|
if (arg == "=true") {
|
|
*dst = true;
|
|
return true;
|
|
} else if (arg == "=false") {
|
|
*dst = false;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
int main(int argc, char* argv[]) {
|
|
tensorflow::example::Options opts;
|
|
std::vector<char*> unknown_flags;
|
|
for (int i = 1; i < argc; ++i) {
|
|
if (string(argv[i]) == "--") {
|
|
while (i < argc) {
|
|
unknown_flags.push_back(argv[i]);
|
|
++i;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (ParseInt32Flag(argv[i], "--num_concurrent_sessions",
|
|
&opts.num_concurrent_sessions) ||
|
|
ParseInt32Flag(argv[i], "--num_concurrent_steps",
|
|
&opts.num_concurrent_steps) ||
|
|
ParseInt32Flag(argv[i], "--num_iterations", &opts.num_iterations) ||
|
|
ParseBoolFlag(argv[i], "--use_gpu", &opts.use_gpu)) {
|
|
continue;
|
|
}
|
|
|
|
fprintf(stderr, "Unknown flag: %s\n", argv[i]);
|
|
return -1;
|
|
}
|
|
|
|
// Passthrough any unknown flags.
|
|
int dst = 1; // Skip argv[0]
|
|
for (char* f : unknown_flags) {
|
|
argv[dst++] = f;
|
|
}
|
|
argv[dst++] = nullptr;
|
|
argc = static_cast<int>(unknown_flags.size() + 1);
|
|
tensorflow::port::InitMain(argv[0], &argc, &argv);
|
|
tensorflow::example::ConcurrentSessions(opts);
|
|
}
|