This change returns NaN as the maximum error if any gradient entry is NaN. This avoids masking gradient implementation errors in tests that don't expect to see NaN results. PiperOrigin-RevId: 207551265
187 lines
6.7 KiB
C++
187 lines
6.7 KiB
C++
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/cc/framework/gradient_checker.h"
|
|
#include "tensorflow/cc/framework/grad_op_registry.h"
|
|
#include "tensorflow/cc/framework/testutil.h"
|
|
#include "tensorflow/cc/ops/standard_ops.h"
|
|
#include "tensorflow/core/framework/node_def_util.h"
|
|
#include "tensorflow/core/framework/tensor_testutil.h"
|
|
#include "tensorflow/core/lib/core/status_test_util.h"
|
|
#include "tensorflow/core/platform/test.h"
|
|
#include "tensorflow/core/util/equal_graph_def.h"
|
|
|
|
namespace tensorflow {
|
|
namespace {
|
|
|
|
using ops::Complex;
|
|
using ops::Const;
|
|
using ops::Div;
|
|
using ops::MatMul;
|
|
using ops::Placeholder;
|
|
using ops::Real;
|
|
using ops::Split;
|
|
using ops::Square;
|
|
using ops::Stack;
|
|
using ops::Sub;
|
|
using ops::Unstack;
|
|
|
|
TEST(GradientCheckerTest, BasicFloat) {
|
|
Scope scope = Scope::NewRootScope();
|
|
TensorShape shape({2, 4, 3});
|
|
auto x = Placeholder(scope, DT_FLOAT, Placeholder::Shape(shape));
|
|
auto y = Square(scope, x);
|
|
float max_error;
|
|
TF_ASSERT_OK((ComputeGradientError<float, float, float>(
|
|
scope, {x}, {shape}, {y}, {shape}, &max_error)));
|
|
EXPECT_LT(max_error, 1e-4);
|
|
}
|
|
|
|
TEST(GradientCheckerTest, BasicDouble) {
|
|
Scope scope = Scope::NewRootScope();
|
|
TensorShape shape({2, 4, 3});
|
|
auto x = Placeholder(scope, DT_DOUBLE, Placeholder::Shape(shape));
|
|
auto y = Square(scope, x);
|
|
double max_error;
|
|
TF_ASSERT_OK((ComputeGradientError<double, double, double>(
|
|
scope, {x}, {shape}, {y}, {shape}, &max_error)));
|
|
EXPECT_LT(max_error, 1e-10);
|
|
}
|
|
|
|
TEST(GradientCheckerTest, BasicComplex64) {
|
|
Scope scope = Scope::NewRootScope();
|
|
TensorShape shape({2, 4, 3});
|
|
auto x = Placeholder(scope, DT_COMPLEX64, Placeholder::Shape(shape));
|
|
auto y = Square(scope, x);
|
|
float max_error;
|
|
TF_ASSERT_OK((ComputeGradientError<complex64, complex64, float>(
|
|
scope, {x}, {shape}, {y}, {shape}, &max_error)));
|
|
EXPECT_LT(max_error, 1e-4);
|
|
}
|
|
|
|
TEST(GradientCheckerTest, BasicComplex128) {
|
|
Scope scope = Scope::NewRootScope();
|
|
TensorShape shape({2, 4, 3});
|
|
auto x = Placeholder(scope, DT_COMPLEX128, Placeholder::Shape(shape));
|
|
auto y = Square(scope, x);
|
|
double max_error;
|
|
TF_ASSERT_OK((ComputeGradientError<complex128, complex128, double>(
|
|
scope, {x}, {shape}, {y}, {shape}, &max_error)));
|
|
EXPECT_LT(max_error, 1e-10);
|
|
}
|
|
|
|
TEST(GradientCheckerTest, FloatToComplex64) {
|
|
// Test an op whose inputs are real and outputs are complex
|
|
Scope scope = Scope::NewRootScope();
|
|
TensorShape shape({2, 4, 3});
|
|
auto x = Placeholder(scope, DT_FLOAT, Placeholder::Shape(shape));
|
|
auto y = Complex(scope, x, x);
|
|
float max_error;
|
|
TF_ASSERT_OK((ComputeGradientError<float, complex64, float>(
|
|
scope, {x}, {shape}, {y}, {shape}, &max_error)));
|
|
EXPECT_LT(max_error, 1e-4);
|
|
}
|
|
|
|
TEST(GradientCheckerTest, Complex64ToFloat) {
|
|
// Test an op whose inputs are complex and outputs are real
|
|
Scope scope = Scope::NewRootScope();
|
|
TensorShape shape({2, 4, 3});
|
|
auto x = Placeholder(scope, DT_COMPLEX64, Placeholder::Shape(shape));
|
|
auto y = Real(scope, x);
|
|
float max_error;
|
|
TF_ASSERT_OK((ComputeGradientError<complex64, float, float>(
|
|
scope, {x}, {shape}, {y}, {shape}, &max_error)));
|
|
EXPECT_LT(max_error, 1e-4);
|
|
}
|
|
|
|
// When calculating gradients that are undefined, test we get NaN
|
|
// as the computed error rather than 0.
|
|
TEST(GradientCheckerTest, BasicNan) {
|
|
Scope scope = Scope::NewRootScope();
|
|
TensorShape shape({2, 4, 3});
|
|
auto x = Placeholder(scope, DT_FLOAT, Placeholder::Shape(shape));
|
|
// y = x/(x-x) should always return NaN
|
|
auto y = Div(scope, x, Sub(scope, x, x));
|
|
float max_error;
|
|
TF_ASSERT_OK((ComputeGradientError<float, float, float>(
|
|
scope, {x}, {shape}, {y}, {shape}, &max_error)));
|
|
EXPECT_TRUE(std::isnan(max_error));
|
|
}
|
|
|
|
TEST(GradientCheckerTest, MatMulGrad) {
|
|
Scope scope = Scope::NewRootScope();
|
|
|
|
TensorShape x_shape({4, 3});
|
|
TensorShape y_shape({3, 2});
|
|
TensorShape z_shape({4, 2});
|
|
|
|
auto x = Placeholder(scope, DT_DOUBLE, Placeholder::Shape(x_shape));
|
|
auto y = Const(scope, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}, y_shape);
|
|
auto z = MatMul(scope, x, y);
|
|
double max_error;
|
|
TF_ASSERT_OK((ComputeGradientError<double, double, double>(
|
|
scope, {x}, {x_shape}, {z}, {z_shape}, &max_error)));
|
|
EXPECT_LT(max_error, 1e-10);
|
|
}
|
|
|
|
TEST(GradientCheckerTest, SplitGrad) {
|
|
// Split is an op with single inputs and multiple outputs.
|
|
Scope scope = Scope::NewRootScope();
|
|
TensorShape x_shape({5, 2});
|
|
auto x = Placeholder(scope, DT_DOUBLE, Placeholder::Shape(x_shape));
|
|
// Split along the second dimension.
|
|
auto split_dim = Const(scope, 1, {});
|
|
auto y = Split(scope, split_dim, x, /* num_split */ 2);
|
|
TensorShape y_shape = TensorShape({5, 1});
|
|
double max_error;
|
|
TF_ASSERT_OK((ComputeGradientError<double, double, double>(
|
|
scope, {x}, {x_shape}, y.output, {y_shape, y_shape}, &max_error)));
|
|
EXPECT_LT(max_error, 1e-10);
|
|
}
|
|
|
|
TEST(GradientCheckerTest, StackGrad) {
|
|
// Stack is an op with multiple inputs and a single output.
|
|
Scope scope = Scope::NewRootScope();
|
|
TensorShape x_shape({1, 2, 3});
|
|
std::vector<Output> xs;
|
|
xs.push_back(Placeholder(scope, DT_DOUBLE, Placeholder::Shape(x_shape)));
|
|
xs.push_back(Placeholder(scope, DT_DOUBLE, Placeholder::Shape(x_shape)));
|
|
auto y = Stack(scope, xs, Stack::Axis(0));
|
|
TensorShape y_shape({2, 1, 2, 3});
|
|
double max_error;
|
|
TF_ASSERT_OK((ComputeGradientError<double, double, double>(
|
|
scope, xs, {x_shape, x_shape}, {y}, {y_shape}, &max_error)));
|
|
EXPECT_LT(max_error, 1e-10);
|
|
}
|
|
|
|
TEST(GradientCheckerTest, StackUnstackGrad) {
|
|
// Chaining a Stack op to an Unstack op allows us to test the gradient checker
|
|
// in a multiple input/output scenario.
|
|
Scope scope = Scope::NewRootScope();
|
|
TensorShape shape({1, 2, 3});
|
|
std::vector<Output> xs;
|
|
xs.push_back(Placeholder(scope, DT_DOUBLE, Placeholder::Shape(shape)));
|
|
xs.push_back(Placeholder(scope, DT_DOUBLE, Placeholder::Shape(shape)));
|
|
auto tmp = Stack(scope, xs, Stack::Axis(0));
|
|
auto y = Unstack(scope, tmp, 2, Unstack::Axis(0));
|
|
double max_error;
|
|
TF_ASSERT_OK((ComputeGradientError<double, double, double>(
|
|
scope, xs, {shape, shape}, y.output, {shape, shape}, &max_error)));
|
|
EXPECT_LT(max_error, 1e-10);
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tensorflow
|